"The effect of different surface treatments on bond strength in repairing hybrid ceramics with composite resin"

Thesis submitted to Crown & Bridge Department Ain-shams
University for the partial fulfillment of the requirements of the Master
degree in Fixed Prosthodontics

By

Donia Mohamed Rashad

BDSc Faculty of Dentistry, MSA University (2013)

Email: donia_fingohope@hotmail.com

Faculty of Dentistry
Ain Shams University
2019

Supervisors

Prof. Amina Hamdy

Professor of Fixed Prosthodontics Department Faculty of Dentistry , Ain Shams University

Dr. Maged Mohamed Zohdy

Associate Professor Fixed Prosthodontics
Faculty of Dentistry , Ain Shams University
Ain Shams University

Faculty of Dentistry
Ain Shams University.
2019

Acknowledgments

In the name of **Allah**, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis

I am highly tha nkful to **Prof. Amina Hamdy**; Professor of F ixed Prosthodontics, Faculty of Dentistr y Ain Sha ms University, for h er immense knowledge, continuous m otivation, fri endy a dvice and kind support. Without her help, this work, would never have been possible

I would like to express my sincere gratitude to **Dr. Maged**Mohamed Zohdy, Associate Professor of Fixed Prosthodontics Faculty of Dentistry Ain Shams University, for the efforts and time he has devoted to accomplish this work, for his continuous support, his patience and motivation in all the time of research and writing of this thesis

I also have to thank **Dr. Bassam Ahmed El-Sayed** Assistant Lecturer of Fixed prosthodontics Faculty of Dentistry Fayoum University for his great effort with me in my statistical work.

Finally, I am highly gra teful to all staff mem bers at Fixed Prosthodontics Department at Fa culty of Dentistry Ain Sh ams University for their great support f or me to f inish m y Mas ter's Degree at the department

I must express my very profound gratitude to my mum and my brother for their support and continuous encouragement

Contents

Subject	Page No.
Contents	i
List of Tables	
List of Figures	iv
Introduction	1
Review of Literature	
✓ CAD/CAM	3
✓ Hybrid dental ceramics	5
✓ Repair hybrid dental ceramics	11
✓ Testing of bond strength	16
Statement of problem	18
Aim of the Study	19
Materials and Methods	20
✓ Materials	
✓ Methodology	25
Results	42
✓ Shear bond strength (Mpa)	43
Descriptive statistics	43
Effect of surface treatment on shear bond strength	44
Effect of surface treatment regardless hybrid ceramic material	46
Effect of hybrid ceramic material on shear bond strength	47
Effect of hybrid ceramic material regardless surface treatment	48
✓ Surface roughness (µm) (2000x)	
Descriptive statistics	50 56
✓ Mode of failure	
Mode of failure in different ceramic materials	56
Mode of failure in different surface treatments	58
Discussion	64
Summary	71 73
Conclusion	
Clinical Significance	74 75
Recommendation	
References	76

List of Tables

Table No.	Title	Page No.
Table (1)	Illustration table showing some examples of the Hybrid	8
	Ceramics ,their composition and some of the mechanical properties	
Table (2)	The materials used in the study	20
Table (3)	Mechanical properties of cerasmart hybrid ceramic material	23
Table (4)	Mechanical properties of crystal ulra hybrid ceramic material	24
Table (5)	Experimental factorial design	25
Table (6)	Mean \pm standard deviation (SD) of shear bond strength (Mpa) for	43
	different hybrid ceramic materials and surface treatments	
Table (7)	Two-Way Anova table showing significance of different factors	44
Table (8)	Mean \pm standard deviation (SD) of shear bond strength (Mpa) for	44
	different hybrid ceramic materials and surface treatments	
Table (9)	Mean \pm standard deviation (SD) of shear bond strength (Mpa) for	47
	different surface treatments	
Table (10)	Mean \pm standard deviation (SD) of shear bond strength (Mpa) for	48
	different hybrid ceramic materials	
Table (11)	Mean \pm standard deviation (SD) of surface roughness (μ m) (2000x)	50
	for different hybrid ceramic materials and surface treatments	
Table (12)	Frequencies (n) and Percentages (%) of mode of failure in different	56
	ceramic materials	
Table (13)	Frequencies (n) and Percentages (%) of mode of failure in different	59
	surface treatment	

List of Figures

Figure No.	Title	Page No
Figure(1)	Cerasmart hybrid ceramic blocks	21
Figure(2)	Crystal ultra-hybrid block	21
Figure(3)	Cojet sand	21
Figure(4)	Hydrofluoric acid 9%	21
Figure(5)	Phosphoric acud etch 37%	22
Figure(6)	silane coupling agent	22
Figure(7)	Flowable composite resin	22
Figure(8)	Adhesive	22
Figure(9)	Monobond Etch and prime(selfetch ceramic primer)	22
Figure(10)	Isomet saw 4000	26
Figure(11)	Cutting cerasmart block	26
Figure(12)	Cutting crystal ultra	26
Figure(13)	Crystal ultra specimen showing thickness 1mm using Digital Caliper	27
Figure(14)	Cerasmart specimen in pink Mould and Crystal ultra specimen in green mould	28
Figure(15)	Finishing of acrostone	28
Figure(16)	1000 grit silicone carbide paper	28
Figure(17)	Wet polishing to the specimen	29
Figure(18)	Aging of the specimens in distilled water for 24 hours at 37 °C	29
Figure(19)	Coloring the repair surface with blue marker	31
Figure(20)	Adjusting the working distance 5mm	31
Figure(21)	The specially designed holding device for the prophyjet	31
Figure(22)	Application of 37% phosphoric acid to the treated surface	32

Figure(23)	Application of 9%hydrofluoric acid	33
Figure(24)	Application of 37% phosphoric acid	33
Figure(25)	Agitation of Monobond Etch and Prime	33
Figure(26)	Leaving the Monobond Etch and Prime on the repair Surface	34
Figure(27)	Scanning Electron Microscope unit	35
Figure(28)	The specimens in the sputter coater	35
Figure(29)	The specimens after gold spotted	35
Figure(30)	Iris cuts of 1mm internal diameter and height cut from pediatric suction catheter	36
Figure(31)	Adhesive application to the iris cuts	36
Figure(32)	Flowable composite resin injection in the lumen of cuts	36
Figure(33)	light cure	37
Figure(34)	After application of 5 samples on the treated specimen	37
Figure(35)	The specimens in the thermocycler box well fixed	37
Figure(36,37,38(Adjusting the thermocycler parameters	38
Figure(39)	The thermocycler and the specimens in the box	38
Figure(40)	The specimen before testing	39
Figure(41)	stainless steel wire	39
Figure(42)	Instron machine	40
Figure(43)	fixation of the specimen	40
Figure(44)	The specimens after break ready for mode failure Evaluation	41
Figure(45)	Bar chart showing average shear bond strength (Mpa) for different surface treatments within each hybrid ceramic material	45
Figure(46)	Bar chart showing average shear bond strength (Mpa) for different hybrid ceramic materials within each surface treatment	45
Figure(47)	Bar chart showing average shear bond strength (Mpa) for different surface treatments	47

Figure(48)	Bar chart showing average shear bond strength (Mpa) for different hybrid ceramic materials	49
Figure(49)	Bar chart showing average Surface roughness (µm) (2000x) for different hybrid ceramic materials and surface treatments	51
Figure(50)	SEM for Cerasmart cojet treatment	52
Figure(51)	SEM for Cerasmart control treatment	52
Figure(52)	SEM for Cerasmart Hydrofluoric acid treatment	53
Figure(53)	SEM for Cerasmart monobond etch and prime Treatment	53
Figure(54)	SEM for Crystal ultra cojet treatment	54
Figure(55)	SEM for Crystal ulttra control treatment	54
Figure(56)	SEM for Cerasmart Hydrofluoric acid treatment	55
Figure(57)	SEM for Crystal ultra monobond etch and prime Treatment	55
Figure (58)	Stacked bar chart showing percentage of mode of failure in different ceramic materials	57
Figure (59)	Pie chart showing percentage of mode of failure in Cerasmart	57
Figure (60)	Pie chart showing percentage of mode of failure in Crystal ultra	58
Figure (61)	Stacked bar chart showing percentage of mode of failure in different surface treatment	59
Figure (62)	Pie chart showing percentage of mode of failure in control samples	60
Figure (63)	Pie chart showing percentage of mode of failure in cojet& silane treated samples	60
Figure (64)	Pie chart showing percentage of mode of failure in HDF acid& silane treated samples	61
Figure (65)	Pie chart showing percentage of mode of failure in samples treated with monobond	61
Figure(66)	mode of failure analysis showing cohesive failure	62
Figure(67)	mode of failure analysis showing adhesive failure	62
Figure(68)	mode of failure analysis showing mixed failure	63

Introduction

The rapid evolution of CAD/CAM technology, has led to a dramatic impact on all disciplines of dentistry especially in the fields of prosthodontics and restorative dentistry. The integration of these technological systems with advances in biomaterials, such as zirconia high strength ceramics, has led to major alterations in education and patient care⁽¹⁾.

Recently hybrid ceramics are introduced to the market having the advantage of both ceramics and composite resins; such as esthetics, durability and color stability of ceramics and young modulus of elasticity which is close to that of dentin, improved flexural properties , low abrasiveness, ease of repair of composite resins and can be used in lower thickness than ceramics ,such as Cerasmart , Crystal Ultra and Lava Ultimate

However some localized failures could happen such as discoloration, microleakage, ditching at the margins, delamination, or simple fracture, it needs to be repaired or replaced .But Some minor defects around margins such as minor discoloration or ditching may not result in impaired function, and thus such failures could be only monitored instead of repaired or replaced. (2) But there is few clinical study about the survival rate of resin nano-ceramics present in the current literature. With intraoral repair; removal of the restoration is not necessary, only bonding resin composite to the imperfect restorations. The procedure includes surface preparation of restoration (3). There are several treatment concepts including: physical, physico-chemical, or chemical adhesion.

However, there is few data available on the bond characteristics of resin composite cements to the hybrid ceramic⁽⁴⁾. Therefore, it seemed interesting to

investigate the effect of different surface treatments on bond strength between CAD/CAM blocks (cerasmart and crystal ultra) and composite resin(polofil NHT Flow) in order to provide a recommendation for the best clinical procedure to be used.

Review of Literature

CAD/CAM

The practice of prosthodontics and the supporting technology involved has evolved tremendously from the traditional to the contemporary. The trend in dentistry is utilizing technology to make it more comfortable, durable, efficient and natural-looking for the patient. As a result of continual developments in technology, new methods of production and new treatment concepts may be expected. Clinicians must have certain basic knowledge if they are to benefit from these new procedures.

Is it the future? One can never say. As the technology is progressing at a rapid pace, one cannot say whether the newly developed procedures will become obsolete even before it can be used in general practice. Digital dentistry is opening new arenas in dentistry. As the trend continues, digitization will become an integral part of contemporary prosthodontics with the probability of most of the procedures being based on digital techniques in the near future⁽⁵⁾

Dental technology that used to be centered on the standardized lost-wax casting technology has been greatly improved with the introduction of dental computer-aided design/computer-aided manufacturing (CAD/CAM) systems. CAD/CAM has transformed the fabrication of dental prostheses offering; improved accuracy, longevity, biocompatibility, assure the standardization, fewer complications than casting technologies with the advantage of reduced treatment time and the elimination of temporary chairside prosthesis⁽⁶⁾. Different material options were introduced since the CEREC system was first marketed in 1985.Uniform material quality of the restorations is considered an advantage due to the homogeneity of the materials used^{(7) (8) (9) (10) (11)}.