

Detection of Prenatal Abnormal Chromosomal Syndrome among Pregnant Women with High Risk of Birth Defect during the First Trimester

Submitted By

Zouhoor Mohamed Elbaz

Master degree in Science 2006

For the Fulfilment of the requirement of

Doctor of Philosophy (Ph-D) Degree in Sciences (Biochemistry)

Faculty of Science
Ain Shams University
2018

Detection of Prenatal Abnormal Chromosomal Syndrome among Pregnant Women with High Risk of Birth Defect during the First Trimester

Submitted By

Zouhoor Mohamed Elbaz

For the Fulfilment of

Ph.D. Degree in Sciences (Biochemistry)

Under the Supervision of

Prof. Magdy Mahmoud

Professor of Biochemistry

Biochemistry Department

Faculty of Science

Ain Shams University

Prof. Palat Krishna Menon

Professor Research and Director of Center of Advanced biomedical research and innovation , Gulf Medical University Ajman, UAE

Dr. Osamma Kamal Zaki

Consultant and director of the unit of

children inherit

Faculty of Medicine

Ain Shams University

Dr. Manjunath Nimmakayalu

Specialist, Cytogenetics and Molecular Biology, Center for Biomedical research and Innovation, Gulf Medical University, Ajman, UAE

Faculty of Science

Ain Shams University

2018

AKNOWLEDGMENT

First and foremost thanks to **ALLAH** who gives me the power to go forward in a way illuminated with his merciful guidance.

No words can express my profound thanks and deep gratitude to **Prof. Magdy Mahmoud** for constructive guidance and his continuous efforts and facilities he offered throughout his supervision. I am also thankful to him for his continuous support faithful advice and continuous encouragement during the execution of the experimental work. It is an honour to me that he is my supervisor and I will never forget his valuable supervision.

I would like to express my thanks and gratitude to **Dr. Osamma Kamal Zaki** for his sincere constructive help and valuable contribution throughout the work and for suggesting several important improvements in the manuscript of the thesis and for sustained encouragement continuous support grate assistance and kind supervision.

I express my appreciation to **Prof. Palat Krishna Menon** for his keen supervision help skilful cooperation and sincere thanks and appreciation the kind help afforded by **Dr. Manjunath Nimmakayalu** I wish to thank him for his continues help warm encouragements and facilities offered by him throughout the work.

My thanks are due to my sincere colleagues for their respectable dealing and sincere cooperation.

DEDICATION

TO MY FAMILY

SPECIAL DEDICATION TO ALL MY FAMILY ESPECIALLY FOR
MY HUSBAND MR. SAYED SELIM FOR HIS CONTINUED
SUPPORT AND ENCOURAGEMENT THROUGHOUT MY WORK
JOURNEY

Table of Content

	Page
Table of content	I
List of Tables	IV
List of Figures	V
List of Abbreviations	VIII
Abstract	
Introduction	1
Aim of work	6
Review of Literature	7
1- Chromosomal Anomalies	7
1.1- Numerical Aberration	7
1.2- Structural Aberrations	8
2- Risk factors for chromosomal	10
anomalies	
2.1- Advanced maternal Age	10
2.2- Recurrent risk and family history	11
(miscarriage)	
2.3- Maternal weight	12
2.4- Smoking	14
2.5- History of Diabetes Mellitus	15
2.6- Multiple pregnancy (Twine or more)	16
3- Noninvasive prenatal screening for	18
chromosomal anomalies	
3.1- History of prenatal screening	18
3.2- Combined First trimester screening	22
3.2.1- Pregnancy Associated Plasma	23
Protein- A	
3.2.2- free Human Chorionic Gonadotropin	25
3.2.3- Nuchal Translucency	26

3.3- Antenatal screening using placental			
growth factor with combined first trimeste			
3.3.1- Placental Growth Factor			
3.3.1.1- Placental Growth Factor	30		
Expression			
3.3.1.2- Role of PIGF in angiogenesis	31		
3.3.1.3 Biological aspect of Placental	32		
Growth Factor			
4- Prenatal Diagnosis for chromosomal	34		
anomalies			
4.1- BACs on beads Technology	35		
4.1.1- Down syndrome (T21)	37		
4.1.2- Edwards's Syndrome (T18)	39		
4.1.3- Patau Syndrome (T13)	40		
4.1.4- XYY Syndrome (47, XYY)			
4.1.5- Angelman Syndrome (chr 15q11.2-	42		
q13)			
4.1.6- DiGeorge Syndrome (Chr 22q11.2)	43		
4.1.7- Williams- Beuren Syndrome (chr	44		
7q11.23)			
Subjects and Methods	46		
Part 1: Prenatal diagnosis of chromosomal	46		
anomalies			
Specimen collection	46		
Laboratory investigation, Biochemical	47		
Markers:			
1- Pregnancy-associated plasma protein	47		
A			
2- Freeβsubunit of Human Chorionic	49		
Gonadotropin			
Sonographic Data	50		
PRISCA software	51		

3- Placental Growth Factor	58
Part 2: Prenatal Genetic testing	59
5- G banding karyotype	59
6- Fluorescence in-situ hybridization	60
DNA Extraction:	61
7- Prenatal BOBs	61
8- Affymetrix Microarray (cytoscan	66
optima)	
Results	72
1- Prenatal Screening test for	72
chromosomal anomalies	
2- Genetic testing for prenatal diagnosis	83
of chromosomal abnormalities	
DISCUSSION	113
1- Prenatal screening	113
2- Prenatal diagnosis	137
REFERENCE	147
Summary	174

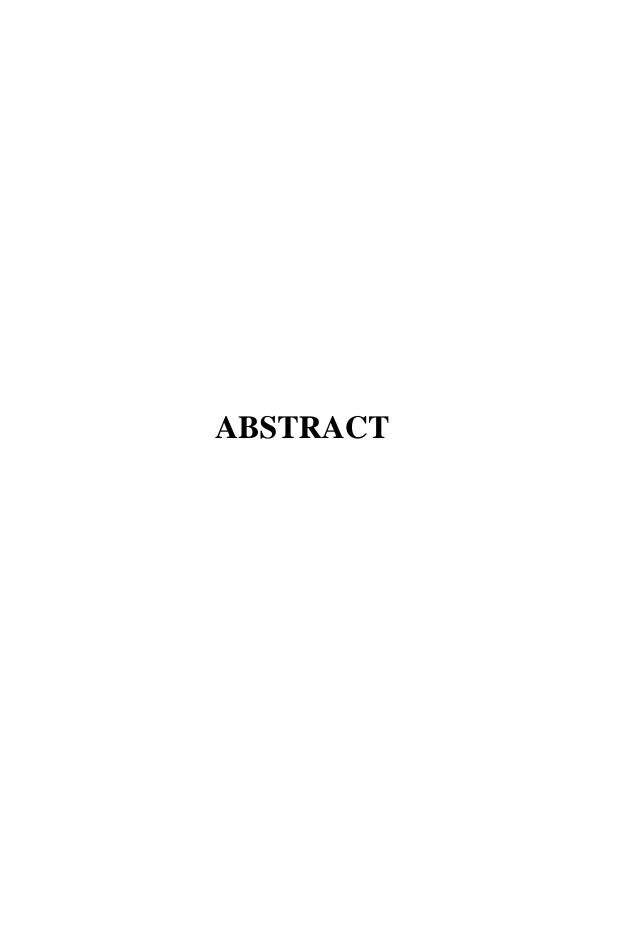
List of Tables

Reference Range of PAPP-A from 8 to 14 weeks of	
gestation	
Reference range of free HCG in pregnant women	50
Impact of Increased Biochemical MoMs on Risk	57
Calculations	
Bacs on beads target regions	62-64
Distributions of all the study cases among the risk	72
groups	
Characteristics of the study groups in the screening	
population	
List of positive cases and there descriptions	83-85
Microarray results of the case with Williams's	
syndrome with definite breakpoints with candidate	
genes.	
Microarray results of the case no (9) with definite	
breakpoints with candidate genes	
Microarray results of the case no (11) with definite	
breakpoints with candidate genes	

List of Figures

Pregnancy associated plasma protein A or PAPP-A	24
as a disulfide-bound homodimer in free form and	İ
as a heterotetrameric	İ
Structure of intact hCG and h-CG beta	26
Nuchal translucency measurement	27
Molecular structure of PLGF protein	29
Schematic representation of binding properties of	31
PIGF isoforms and PIGF/VEGF heterodimer	1
technique of prenatal BACs on Beads	36
The BAC PCR product DNA is attached to the	37
polystyrene bead by coupling the amino end of the	ı
DNA to a carboxy group on the bead	ı
The features of down syndrome among different	38
stages of chromosome 21 abnormalities	ı
the process flow of BACs on Beads technique	62
Process flow of cytoscan optima technique	71
Distributions of the study cases of the risk groups	73
Percentage of distribution of the study population	74
Comparison of maternal age at delivery with	75
different risk groups	ı
Comparison of maternal weight with different risk	76
groups	1
Comparison of ethnic origin with different risk	76
groups	
Comparison of Diabetic cases with different risk	77
groups	1
Comparison of NT value with different risk groups	78
Comparison of PAPP-A value with different risk	78
groups	

Comparison freeHCG value with different risk	79
groups	
Comparison of PLGF value with different risk	79
groups	
Correlation between PAPP-A and PLGF	82
Addition in chromosome 21 which indicate a case	86
of trisomy 21 using BACs on Beads	
Trisomy 21 using BACs on Beads	87
Confirmatory test for T21 using FISH assay	88
Addition in chromosome 18 which indicate a case	91
of trisomy 18 using BACs on Beads	
Sample (3) shows Trisomy 18 using BoBs assay	92
Confirmatory test for T18 using FISH assay	92
Confirmatory test for T13 using FISH assay	93
Sample (5) shows addition in chromosome Y	94
which indicate a case of XYY using BACs on	
Beads	
XYY using BoBs assay	95
Sample (6) shows deletion in 7q11.23 regain	96
which indicate Williams syndrome using BACs on	
Bead	


Microarray profile of the patient with William's	99
syndrome showing accurate breakpoints -	
7q11.23(72,718,277-74,141,746)x1	
BOBs result shows deletion in 22q11.2 region	100
representing Di George Syndrome	
BOBs result shows deletion in 22q11.2 region	101
representing Di George Syndrome	
DGS shows normal with FISH using trisomy 21	101
and trisomy 13 probes	
BOBs result shows deletion in 15q11.2-q13 critical	103
region representing Angelman Syndrome	
BOBs result shows deletion in 15q11.2-q13 critical	103
region representing Angelman Syndrome	
Normal case using BACs o Beads	104
normal using BOBs	105
Microarray results definite breakpoints with	107
candidate genes	
Microarray results shows specific genes for the	107
definite breakpoints.	
Microarray results definite breakpoints with	108
candidate genes	
Microarray results for case 11 (A)	111
Microarray results for case 11 (B)	112

ABBREVIATIONS AND SYMBOLS

aCGH	Array Comparative Genomic Hybridization
ACOG	American College Of Obstetrics And
	Gynaecology
ADAM12	Disintegrin And Metalloproteinase Domain-
	Containing Protein 12
AF	Amniotic Fluid
AMR	Analytical Measurement Range
AUTO	Autosomal prope
AS	Angelman Syndrome
BACs	Bacterial Artificial Chromosomes
BMI	Body Mass Index
BOBs	Bacterial Artificial Chromosomes On Beads
CFTS	Combined First Trimester Screening
CDC	Cri due Chat syndrome
Chr	Chromosome
CI	Confidence Intervals
CNVs	Copy Number Variants
CRL	Crown-Rump Length
CV	Coefficient Of Variation
CVs	Chorionic Villis
DGS	Digeorge Syndrome
DM I	Diabetes Mellitus, Type I
DM II	Diabetes Mellitus Type II
DS	Down Syndrome
eFTS	Enhanced First Trimester Screening
ES	Edwards Syndrome
EVTs	Extravillous Trophoblasts
FGR	Fetal Growth Restriction
FISH	Fluorescence In Situ Hybridization

FMF	Fetal Medicine Foundation
FP	False Positive
FPR	False Positive Rate
FTS	First Trimester Screening
GA	Gestational Age
G-banding	Giemsa Banding
GCM1	Glial Cell Missing 1
GHBP	Growth Hormone Binding Protein
GMU	Gulf Medical University
LGS	Langer-Giedion Syndrom
HCG	Human Chorionic Gonadotropin
IGF	Insulin-Like Growth Factors
IGFBPs	Insulin-Like Growth Factor Binding Proteins
IQ	Intelligence Quotient
ITA	Invasive Trophoblast Antigen
IVF	In Vitro Fertilisation
Kb	Kilobyte
LMP	Last Menstrual Period
Mb	Megabyte
MDS	Miller-Dieker Syndrom
MoMs	Multiples Of Median
mRNAs	Messenger Rnas
MSAFP	Maternal Serum Alpha Fetoprotein
NB	Nasal Bone
Ng	Nano Gram
NT	Nuchal Translucency
NTD	Neural Tube Defect
PAPP-A	Pregnancy Associated Plasma Protein A
Pb	Petabyte
PE	Preeclampsia
PGDM	Pre Gestational Diabetes Mellitus

PGH	Placental Growth Hormone
PGS	Pre-Implantation Genetic Screening
PLGF	Placental Growth Factor
PMP22	Peripheral Myelin Protein 22
POC	Product Of Consumption
PP13	Placental Protein 13
ProMBP	Preform Of Eosinophil Major Basic Protein
PS	Patau Syndrome
PWS	Prader-Willi Syndrome
QF-PCR	Quantitative Fluorescent Polymerase Chain
	Reaction
SGA	Small Gestational Age
SMS	Smith-Magenis syndrome
SNP	Single Nucleotide Polymorphism
T13	Trisomy 13
T18	Trisomy 18
T21	Trisomy 21
TRACE	Time Resolved Amplified Cryptate Emission
uE3	Unconjugated Oestriol
US	Ultrasound
VCFS	Velocardiofacial Syndrome
VEGF	Vascular Endothelial Growth Factor
WBS	Williams-Beuren Syndrome
WHS	Wolf-Hirschhorn Syndrome
WS	Williams Syndrome
β –hCG	Beta Human Chorionic Gonadotropin

