

WHITE MATTER INTEGRITY ALTERATION IN MIRROR NEURONS OF SCHIZOPHRENIC PATIENTS AND THEIR CORRELATIONS WITH SOCIAL COGNITION; DTI STUDY

Thesis

Submitted for Partial Fulfillment of Master Degree in Neuropsychiatry

By
Hadeer Hassan Ahmed Mohamed
(M.B.,B.Ch.)

Supervised by

Prof. Dr. Heba Hamed ElShahawi

Professor of Neurology and Psychiatry Faculty of Medicine - Ain Shams University

Prof. Hossam Moussa Sakr

Professor of Diagnostic Radiology
Faculty of Medicine - Ain shams University

Dr. Mai Seif El-din Abdeen

Lecturer of Neurology and Psychiatry
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgement

I thank **ALLAH** from all my heart for His maintained grace and blessings in my life and my career and for this project to come to an end. Second, I would like to thank **Prof. Dr. Heba Hamed ElShahawi**, **Professor of Neurology and Psychiatry**, for her encouragement and support in my career in general and in help accomplishing this work.

No words can describe my sincere gratitude and thankfulness to *Prof. Hossam Moussa Sakr, Professor of Radiology,* for his generous mentorship and education during my thesis. Without his expertise and guidance this work would have not been possible. Special thanks to *Dr. Mai Seif El-din Abdeen, Lecturer of Neurology and Psychiatry,* for her revision of the work and encouraging words and for her mentorship during this thesis.

Finally I would like to thank the patients contributed to this study.

Hadeer Hassan

List of Contents

	Title	Page
•	List of Abbreviations	I
•	List of Tables	V
•	List of Figures	VII
•	Introduction	1
•	Aim of the Study	6
•	Review of Literature	7
•	Subjects and Methods	74
•	Results	86
•	Discussion	108
•	Limitation of the Study	119
•	Recommendations	121
•	Summary	
•	References	130
	Arabic Summary	

ADC Apparent Diffusion Coefficient

MNS Mirror Neuron System

WM White Matter

DTI.....Diffusion Tensor Imaging

FA Fractional Anisotropy

MRI Magnetic resonance imaging

SANS Scale for Assessment of Negative

Symptoms

SAPS Scale for Assessment of Positive

Symptoms

WHO World Health Organization

IRI Interpersonal Reactivity Index

IQ Intelligence Quotient

MATRICS Measurement and Treatment

Research to improve Recognition in

Schizophrenia

WCST Wisconsin Card Sorting Test

FAR Facial Affective Recognition

IFG Inferior Frontal Gyrus

ACC Anterior Cingulate Cortex

MPFC Medial Prefrontal Cortex

ToM Theory of Mind

TT Theory Theory

ST Stimulation Theory

STS Superio Temporal Sulcus

TPJ Tempro-Parietal Junction

AIHQ Ambiguous Intentions and Hostility

Questionnaire

ADHD Attention Deficit Hyperactivity

Disorder

AG Angular Gyrus

ASD Anterior Intraparietal Area
ASD Autism Spectrum Disorder

ASQ Attributional Style Questionnaire

BA Broca's Area

CPT Continuous Performance Test

DSM-5 Diagnostic and Statistical Manual of

Mental Disorders, Fifth Edition

DSM-IV Diagnostic and Statistical Manual of

Mental Disorders, Fourth Edition

DSST Digit Symbol Substitution Task

DTMRI Diffusion Tensor MRI

DWMRI Diffusion Weighted MRI

EEG Electroencephalography

EMG Electromyography

F5 Mirror neurons in ventral premotor

region

FEF Frontal Eye Field

FG Fusiform Gyrus

fMRI Functional MRI

IF Inferior Frontal Sulcus

IFOF Inferior Fronto-Occipital Fasiculus

ILF Inferior Longitudinal Fasiculus

IP Inferior Precentral Sulcus

IPC Inferior Parietal Cortex

IPSAQ Internal Personal and Situational

Attributions Questionnaire

LIP Lateral Intraparietal Area

LT ACC Left Anterior Cingulate Cortex

LT IPL Left Inferior Parietal Lobe

LT PMA Left Premotor Area

M1 Primary motor cortex

MD Mean Diffusity

MEG Magnetoencephalography

MEPs Motor Evoked Potential

MNA Mirror Neuron Activity

PET Positron Emission Tomography

PMC Primary Motor Cortex

Pop Pars Opercularis

PSSC Primary Somatosensory Cortex

QoL Quality of Life

RAIT Rapid Approximate Intelligence Test

ROCF Reye Osterrieth Complex Figure test

ROI Region of Interest

RT ACC Right Anterior Cingulate Cortex

RT IPL Right Inferior Parietal Lobe

RT PMA Right Premotor Area

rTMS Repetitive Transcranial Magnetic

Stimulation

RVIP Rapid Visual Information Processing

SCID-I Structured Clinical Interview for

DSM-IV Axis I Disorders

SMA Supplementary Motor Area

SMG Supramarginal Gyrus

SPSS Statistical Package for the Social

Science

SSD Schizophrenia Spectrum Disorder

TBSS Tract Based Spatial Statistics

TMS Transcranial Magnetic Stimulation

TMT Trail Making Test

US United States

vPMA ventral Premotor Area

WA Wernicke's Area

WAIS Wechselar Adult Intelligence Scale

WMS-R-III Wechselar Memory Scale

List of Tables

Table No.	Title	Page	
Review of Literature			
Table (1):	Illustrating Advantages and Drawbacks of Diffusion MR Ima Techniques. Reference of the tareproduced from	ıble	
Results			
Table (1):	Socio-demographic data of sub	jects 87	
Table (2):	Comparing cognitive functions between schizophrenia group a healthy controls		
Table (3):	Comparing DTI findings between Schizophrenia group and health controls	hy	
Table (4):	Correlation between FA and Tra (ADC) of Anterior Cingulate Gyr (ACG) and cognitive functions	rus	
Table (5):	Correlation between FA and Tra (ADC) of inferior parietal lobe (I and cognitive functions	PL)	
Table (6):	Correlation between FA and Tra (ADC) of premotor area (PMA) a cognitive functions	nd	
Table (7):	Description of SAPS and SANS scores of schizophrenia group.	103	

List of Tables

Table No.	Title	Page
Table (8):	Correlation between Anhedo Associability subscale of sca negative symptoms (SANS), negative symptoms (SANS) t scale of positive symptoms (and DTI findings	ale of scale of total and (SAPS)
Table (9):	Correlation between items of Anhedonia & Associability so of scale of negative sympton and DTI findings	subscale ns (SANS)

List of Figures

Figure No.	Title	Page
Fig. (1):	Empathy and Mentalizing T	•
Fig. (2):	The mirror neuron system i human brain	
Fig. (3):	The parietofrontal mirror sy humans	
Fig. (4):	Schematic illustration of an overarching model that depict of a dysfunctional mirror neurosystem and its metaplastic reorganization to underlie diversymptom dimensions of schizer	ron erse
Fig. (5):	Types of WM tractography.	60
Fig. (7):	Gaussian (or normal) diffus distribution	•
Fig. (8):	schizophrenia group Vs hea	· ·
Fig. (9):	schizophrenia group Vs hea controls as regards marital	
Fig. (10):	Wechsler intelligence scale: schizophrenia group versus controls	healthy
Fig. (11):	Wechsler memory scale: schizophrenia group versus controls	=
Fig. (12):		93

List of Figures

Figure No.	Title	Page
Fig. (13):		93
Fig. (14):	Wisconsin card sorting tests schizophrenia group versus controls	healthy
Fig. (15):	Continuous performance te schizophrenia group versus controls	healthy
Fig. (16):	Trial making test: schizophi	
Fig. (17):	Diffusion tensor imaging fin schizophrenia group versus controls	healthy
Fig. (18):	Diffusion tensor imaging fin schizophrenia group versus controls	healthy
Fig. (19):	Diffusion tensor imaging fin schizophrenia group versus controls	healthy
Fig. (20):	Diffusion tensor imaging fin schizophrenia group versus controls	healthy
Fig. (21):	Diffusion tensor imaging fin schizophrenia group versus controls	healthy

Abstract

Abstract Objective: the aim of this study is to use Diffusion tensor imaging *(Malcolm et al., 2009)* to evaluate the white matter microstructure of the fiber tracks connecting the premotor cortex (PMC), the inferior parietal lobule (IPL) and the anterior cingulate cortex (ACC) in patients diagnosed with schizophrenia. **Conclusions:** We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode and chronic schizophrenia;. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.

ARTICLE INFO

Keywords: Mirror neurons, Schizophrenia, DTI studies, Social cognition.

INTRODUCTION

Schizophrenia is a severe mental disorder, affects approximately 1% of the population and is characterized by disordered thought processes as well as impaired emotional responses (Wheeler & Voineskos, 2014). As well as a number of impairments that includes sensory and cognitive processing abnormalities (Kalkstein et al., 2010). However, in addition to these fairly well examined abnormalities. sometimes called 'cold cognition' abnormalities, schizophrenia patients experience a number of impairments in social cognition (Mehta et al., 2014). Indeed, it has been suggested that schizophrenia should be thought of as a 'social brain' disorder (Burns, 2006).

cognition defined Social as an ability communicate feelings and attitudes and to understand signals that express these feelings and attitudes in other people (Adolphs, 2010). Social cognition skills are critical to successful functioning in social contexts and, in schizophrenia, their deficits contribute to poor functional outcomes (Pinkham, 2014). It is now understood that the social cognition is mediated by an interconnected network of cortical and subcortical brain regions, including orbitofrontal and ventromedial frontal cortex, cingulate cortex, insula, striatum and amygdala (Adolphs, 2010; McDonald et al., 2013).

Mirror neurons (MNS) play a unique role in the brain architecture in relation to social cognition skills. These neurons are active not only during an action execution but also when an action of others is observed. Thus, it has been

-Introduction

proposed that they may confer not only the capacity to anticipate the actions of others but that they have contributed to the development of the theory of mind and empathy, as well as other important aspects of social cognition skills in non-human primates and humans (*Ferrari*, 2014; *Bonini*, 2016).

As distributed structural circuits of cortical and subcortical areas serve normal brain functions, disrupted communication within and between brain regions may be the core pathology of schizophrenia. Two decades ago it was proposed that the symptoms of schizophrenia were due to alterations in cerebral connectivity (*Friston & Frith, 1995*), a hypothesis that has been gaining traction in recent years with the availability of advanced imaging techniques that can be used to address this theory (*Kochunov & Hong, 2014*). White matter in the brain consists of the axonal projections to other neurons and brain areas and forms the basis for connectivity in the brain (*Wheeler & Voineskos, 2014*).

Although there have been functional imaging studies on the impairment of the MNS in schizophrenia, structural imaging studies are relatively scarce. Previously structural abnormalities have been reported in each of the components of the MNS individually (*Tseng et al., 2015*). Alterations as identified by magnetic resonance imaging (MRI) were reported in frontal and parietal lobes (*Xiao et al., 2015*) as well as fronto-parietal white matter (WM) connections (*Sigmundsson et al., 2001; Burns et al., 2003*). It is plausible to speculate that there are alterations