

EFFECT OF SHEAR CONNECTORS AND INTERFACE ROUGHNESS ON THE BEHAVIOR OF TWO WAY COMPOSITE PRE-SLABS

By

MAHMOUD HISHAM HASSAN EL-MELIGY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

EFFECT OF SHEAR CONNECTORS AND INTERFACE ROUGHNESS ON THE BEHAVIOR OF TWO WAY COMPOSITE PRE-SLABS

By MAHMOUD HISHAM HASSAN EL-MELIGY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Mohamed Rabie Mahmoud

Dr. Wael Salah El-Din Zaki

Professor of Concrete Structures
Structural Engineering
Faculty of Engineering, Cairo University

Dr. Wael Salah El-Din Zaki

Lecturer of Structural Engineering
Structural Engineering
Faculty of Engineering, Beni Suef University

EFFECT OF SHEAR CONNECTORS AND INTERFACE ROUGHNESS ON THE BEHAVIOR OF TWO WAY COMPOSITE PRE-SLABS

By MAHMOUD HISHAM HASSAN EL-MELIGY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Mohamed Rabie Mahmoud,

Thesis Main Advisor

- Prof. of Concrete Structures, Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Talaat Mostafa,

Internal Examiner

- Prof. of Concrete Structures, Faculty of Engineering, Cairo University

Prof. Dr. Gouda Mohamed Ghanem,

External Examiner

- Prof. Faculty of Engineering Mataria, Helwan University
- Dean of the Higher Institute, Shorouk Academy

Engineer's Name: Mahmoud Hisham Hassan El-Meligy

Date of Birth: 19/6/1988 **Nationality:** Egyptian

E-mail: Mah.hisham@gmail.com **Phone:** 01225857999 - 01115646423

Address: 13 Israa el Moalemeen, Lebanon square,

Agouza, Giza

Registration Date:1/10/2013Awarding Date:..../..../2018Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Mohamed Rabie Mahmoud

Dr. Wael Salah El-Din Zaki (Faculty of Engineering,

Beni Suef University)

Examiners:

Prof. Gouda Mohamed Ghanem (External Examiner)
- Prof. Faculty of Engineering Mataria, Helwan University

- Dean of Higher Institute, Shorouk Academy

Prof. Mohamed Talaat Mostafa (Internal Examiner)
Prof. Mohamed Rabie Mahmoud (Thesis Main Advisor)

Title of Thesis:

Effect of shear connectors and interface roughness on the behavior of two way composite pre-slabs

Key Words:

Concrete; Pre-slabs; Interface Roughness; Shear Connectors; Shear Transfer

Summary:

Pre-slabs are one of the most commonly used concrete elements especially in construction of buildings, skyscraper and bridges, the pre-cast concrete layer is used as form or shuttering for the cast in place concrete layer. In addition, this cast-in-place layer is widely used for strengthening an existing slab and repair applications, one of the main problems when using pre-slabs is the shear transfer between the two layers.

In this research, the behavior of two-way composite pre-slabs was studied and an experimental program was carried out to test nine simply supported two way slabs, one of them was a monolithic slab that was used as a reference and the other remaining eight slabs were composite pre-slabs composed of two concrete layers. The composite pre-slabs were divided into three main groups to investigate the effect of shear connectors length and ratio, and interface roughness on the behavior of two-way composite pre-slabs. Also a theoretical analysis was carried out to confirm the experimental program using ANSYS Simulation software.

It was concluded from these experiments that increasing of shear connectors length or ratio led to increase horizontal shear capacity. Also, using epoxy binding materials and interface roughness at the contact surface between the two concrete layers had a great effect on increasing the horizontal shear capacity of composite pre-slabs.

Acknowledgments

The author wishes to express his most hearted thanks to prof. Dr. Mohamed Rabie Mahmoud for his wise sincere supervision and to express his deepest appreciation to Dr. Wael Salah El-Din for his guidance, interest and recommendations.

The author also would like to express his thanks to the staff of reinforced concrete research laboratory, faculty of engineering, Cairo University for their assistance and cooperation during the experimental work.

Dedication

This thesis is dedicated to my parents who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve. Also to my brother who I am truly grateful for having him in my life and to my wife who have always been a constant source of support and encouragement during the challenges of my life and to my beloved son Marwan.

Table of Contents

ACKNO	WLEDGMENTS	I
DEDICA	ATION	II
TABLE	OF CONTENTS	III
LIST O	F TABLES	VII
LIST O	F FIGURES	VIII
ABSTRA	ACT	XI
	ER 1 : INTRODUCTIONERROR! BOOKMARK NOT DE	
1.1.	GENERAL ERROR! BOOKMARK NOT D	EFINED.
1.2.	OBJECTIVES	
1.3.	SCOPE AND CONTENTS	2
СНАРТ	ER 2 : REVIEW OF PREVIOUS WORK	4
2.1.	General	4
2.2.	TYPES OF TESTS	4
2.3.	FACTORS AFFECTING SHEAR STRENGTH	6
2.3.1	STEEL DOWELED SHEAR CONNECTIONS	6
2.3.1.1	EFFECT OF DOWELS EMBEDDED LENGTH AND PERCENTAGE AREA ON	
	ULTIMATE SHEAR STRENGTH	6
2.3.1.2.	EFFECT OF STEEL STRENGTH, BAR DIAMETER AND SPACING	10
2.3.1.3.	EFFECT OF THE DISTRIBUTION AND SHAPES OF STEEL DOWELS OVER SE	'AN11
2.3.2.	INTERFACE ROUGHENING IN COMPOSITE SECTIONS	13
2.3.2.1.	PREVIOUS RESEARCHES RESULTS ON THE EFFECT OF INTERFACE ROUGH	HENING
	ON SHEAR TRANSFER CAPACITY	13
2.3.3.	EPOXY BINDING MATERIAL CONNECTION	19
2.4.	THEORETICAL ANALYSIS OF THE COMPOSITE CONCRETE MEMBERS	20
2.5.	PREDICTION OF SHEAR TRANSFER CAPACITY	21
2.5.1.	Empirical formulas	21
2.5.2.	SEMI-EMPIRICAL FORMULAS	22
2.6.	DETERMINATION OF HORIZONTAL SHEAR STRESS CAPACITY	23
2.6.1.	AMERICAN CONCRETE INSTITUTE (ACI) (2008)	25
2.6.2.	BS 8110 (1995)	28
2.6.3.	DIN 1045 (1978)	29
2.6.4.	JAPANESE STANDARD SPECIFICATION	30
2.6.5.	ECP 203-2007	30
CHAPT	ER 3: EXPERIMENTAL WORK AND TEST PROGRAM	32
3.1.	Introduction	32
3.2.	CONCRETE RESEARCH LABORATORY	32

3.3.	TEST SPECIMENS	32
3.3.1.	PREPARATION OF TEST SPECIMENS	32
3.3.1.1.	Materials	33
3.3.1.2	CONCRETE MIX DESIGN	34
3.3.1.3	MIXING, PLACING AND CURING	35
3.3.1.4	PROPERTIES OF HARDENED CONCRETE	36
3.3.2	MONOLITHIC SLAB SPECIMENS	38
3.3.3	COMPOSITE PRE-SLABS SPECIMENS	39
3.3.4	INTERFACE OF PRE-SLAB SPECIMENS	40
3.3.5	SHEAR CONNECTORS	40
3.3.6	TEST SET-UP AND LOADING ARRANGEMENT	43
3.4.	Measurements	45
	ER 4 : ANALYSIS AND DISCUSSION OF EXPERIMENTAL R	
•••••		49
4.1.	GENERAL	49
4.2.	RESULTS OF TESTED SLABS	49
4.2.1.	CRACK PATTERN AND MODE OF FAILURE	50
4.2.2.	CRACKING LOAD	68
4.2.3.	Ultimate Load	69
4.2.4.	SHEAR TRANSFER ALONG THE INTERFACE	71
4.2.5.	LOAD-DEFLECTION CURVES	72
4.2.6.	CONCRETE TENSILE STRAIN	78
4.2.7.	STRAIN IN SHEAR CONNECTORS	79
4.2.8	SLIPPAGE IN COMPOSITE PRE-SLABS	80
CHAPT	ER 5 : NUMERICAL ANALYSIS WITH FINITE ELEMENT	
IDEALI	ZATION	81
5.1.	GENERAL	81
5.2.	FINITE ELEMENT SOFTWARE (ANSYS)	
5.3.	FINITE ELEMENT MODELING BY ANSYS PROGRAM	82
5.3.1.	ELEMENTS TYPE	83
5.3.2.	REAL CONSTANT	83
5.3.3	Materials	83
5.3.3.1.	Concrete	83
5.3.3.2.	STEEL REINFORCEMENT	84
5.3.3.3.	GEOMETRY AND DIMENSIONS	84
5.3.4.	Constrains	89
5.3.5.	LOAD STEPPING AND FAILURE DEFINITION	89
5.3.6.	NON-LINEAR ANALYSIS IN ANSYS	89
5.3.7	NON-LINEAR SOLUTION	90

CHAPTER 6 : CORRELATION BETWEEN THEORETICAL AND		
EXPERIM	MENTAL RESULTS	91
6.1.	General	91
6.2.	ULTIMATE LOADS	91
6.3.	ULTIMATE SHEAR STRENGTH	92
6.4.	LOAD DEFLECTION CURVES	93
6.5.	FLEXURE AND SHEAR CRACKS	102
CHAPTE	ER 7 : DISCUSSION AND CONCLUSIONS	112
CHAPTE 5.1.	CR 7 : DISCUSSION AND CONCLUSIONS	
		112
5.1.	General	112
5.1. 5.2. 5.2.	GENERAL CONCLUSIONS	112112113

List of Tables

Table 2.1: Empirical formulas of previous work	.21
Table 2.2: Horizontal shear failure results reported by ACI-ASCE Committee 333	.24
Table 2.3: Design ultimate horizontal shear stress at interface according to BS 8110	.28
Table 2.4: Limits of basic values of the shear stress T for the design of shear	
reinforcement in kg/cm ² under service load according to DIN 1045	.29
Table 3.1: Concrete mix proportion by weights	.33
Table 3.2: Tensile strength of steel bars.	.33
Table 3.3: Compressive strength of concrete cubes for trial mix	.34
Table 3.4: Compressive strength of concrete cubes for specimens (S1, S2, S3, S4 and	l
S5)	.34
Table 3.5: Compressive strength of concrete cubes for specimens (S6, S7, S8, S9)	.34
Table 3.6: Compressive strength of tested specimens at testing time	.34
Table 3.7: Test specimens	.44
Table 3.8: Strain gauges technical specifications	.47
Table 4.1: Grouping for tested specimens	.49
Table 4.2: Test Results Summary for All Slabs	.68

List of Figures

Figure 2.1: Side view of Hanson's push-off test specimen	5
Figure 2.2: Push-off Test specimen	
Figure 2.3: Effect of dowels area on shear transfer strength	
Figure 2.4: Details of tested specimens by Tan	
Figure 2.5: Shear stress at 0.005 inch slip against steel across joint	9
Figure 2.6: Ultimate shear strength against steel across joint	
Figure 2.7: Effect of Dowels diameter	
Figure 2.8: Details of specimens with steel trusses shear connectors	
Figure 2.9: Shear stud in favorable, central and unfavorable position	
Figure 2.10: Cross-Section of Beam tested by Revesz	
Figure 2.11: Cross-Section of Beam tested by Hanson	
Figure 2.12: Elevation view of test setup for Hanson's Tests	
Figure 2.13: Beam Cross-section Tested by Saemann and Washa	
Figure 2.14: Beam Cross-section tested by Bryson and Carpenter	
Figure 2.15: Beam Cross-section tested by Evans and Chung	
Figure 2.16: Beam Cross-section tested by Bryson and Carpenter	
Figure 2.17: Elevation view of loading setup for the split-beam tests	
Figure 3.1: Wooden forms and reinforcement of tested slabs	
Figure 3.2: Mechanical Mixer used for mixing concrete	35
Figure 3.3: Slump test to check the consistency of the concrete	
Figure 3.4: Concrete compaction using electrical vibrators	
Figure 3.5: Investigation of concrete compressive strength	
Figure 3.6: Cubes used to investigate concrete compressive strength	37
Figure 3.7: Monolithic slab details	58
Figure 3.8: Monolithic slab in the wooden form after pouring	58
Figure 3.9: Composite Pre-slab with epoxy details	59
Figure 3.10: Details of Composite Pre-slab with dowels	59
Figure 3.11: Composite Pre-slab with roughened interface	40
Figure 3.12: Main reinforcement and shear connectors of composite pre-slab	
Figure 3.13: Composite pre-slab with shear dowels	
Figure 3.14: Pouring concrete for the second layer of tested pre-slabs	41
Figure 3.15: General shape and dimensions for shear dowels.	
Figure 3.16: Composite Pre-slab with epoxy at the layer of interface	
Figure 3.17: Pouring concrete for the second layer of tested pre-slab with epoxy on	the
interface contact surface	42
Figure 3.18: Uniform distribution load arrangement used in tested specimens	43
Figure 3.19: Hydraulic Jack and load cell for applying and measuring loads	
Figure 3.20: Demic points under uniformly distributed load	46
Figure 3.21: Vertical deflection measurement points	
Figure 3.22: Setup of deflection measurement dial gauges	
Figure 3.23: Preparation of electrical strain gauges.	
Figure 3.24: Dial gauges used to measure horizontal slippage in tested specimens	
Figure 4.1: Crack Pattern for Monolithic Slab S1	
Figure 4.2: Shear Cracks for Monolithic Slab S1	
Figure 4.3: Shear Failure for Monolithic Slab S1	
Figure 4.4: Crack Pattern for Monolithic Slab S2	

Figure 4.5: Shear Cracks for Monolithic Slab S2	53
Figure 4.6: Shear Failure for Monolithic Slab S2	53
Figure 4.7: Crack Pattern for Monolithic Slab S3	
Figure 4.8: Shear Cracks for Monolithic Slab S3	55
Figure 4.9: Shear Failure for Monolithic Slab S3	
Figure 4.10: Crack Pattern for Monolithic Slab S4	56
Figure 4.11: Shear Cracks for Monolithic Slab S4	
Figure 4.12: Shear Failure for Monolithic Slab S4	
Figure 4.13: Crack Pattern for Monolithic Slab S5	
Figure 4.14: Shear Cracks for Monolithic Slab S5	
Figure 4.15: Shear Failure for Monolithic Slab S5	
Figure 4.16: Crack Pattern for Monolithic Slab S6	
Figure 4.17: Shear Cracks for Monolithic Slab S6	
Figure 4.18: Shear Failure for Monolithic Slab S6	
Figure 4.19: Crack Pattern for Monolithic Slab S7	
Figure 4.20: Shear Cracks for Monolithic Slab S7	
Figure 4.21: Shear Failure for Monolithic Slab S7	
Figure 4.22: Crack Pattern for Monolithic Slab S8	
Figure 4.23: Shear Cracks for Monolithic Slab S8	
Figure 4.24: Shear Failure for Monolithic Slab S8	
Figure 4.25: Crack Pattern for Monolithic Slab S9	
Figure 4.26: Shear Cracks for Monolithic Slab S9	
Figure 4.27: Shear Failure for Monolithic Slab S9	
Figure 4.28: Ultimate Load for the tested slabs (Group 1)	
Figure 4.29: Ultimate Load for the tested slabs (Group 2)	
Figure 4.30: Ultimate Load for the tested slabs (Group 3)	
Figure 4.31: Ultimate shear strength at interface of the tested slabs	
Figure 4.32: Vertical deflection at mid spans for all specimens	
Figure 4.33: Vertical deflection at mid spans (Group 1)	
Figure 4.34: Vertical deflection at mid spans (Group 2)	
Figure 4.35: Vertical deflection at mid spans (Group 3)	
Figure 4.36: Vertical deflection pattern at cracking load (Group 1)	
Figure 4.37: Vertical deflection pattern at cracking load (Group 2)	
Figure 4.38: Vertical deflection pattern at cracking load (Group 3)	
Figure 4.39: Vertical deflection pattern at ultimate load (Group 1)	
Figure 4.40: Vertical deflection pattern at ultimate load (Group 2)	
Figure 4.41: Vertical deflection pattern at ultimate load (Group 3)	
Figure 4.42: Concrete tensile strain at cracking load (Group 1)	
Figure 4.43: Concrete tensile strain at cracking load (Group 2)	
Figure 4.44: Concrete tensile strain at cracking load (Group 3)	
Figure 4.45: Maximum strain in dowels of all tested pre-slabs	
Figure 4.46: Slippage of all tested pre-slabs	
Figure 5.1: Stress-Strain curve for concrete (Fcu = 40mpa).	
Figure 5.2: Finite element mesh for monolithic slab (S1)	84
Figure 5.3: Finite element mesh for Composite pre-slab (S2).	
Figure 5.4: Finite element mesh for Composite pre-slab (S3).	
Figure 5.5: Finite element mesh for Composite pre-slab (S4).	
Figure 5.6: Finite element mesh for Composite pre-slab (S5).	
Figure 5.7: Finite element mesh for Composite pre-slab (S6).	
Figure 5.8: Finite element mesh for Composite pre-slab (\$7).	

Figure 5.9: Finite element mesh for Composite pre-slab (S8).	88
Figure 5.10: Finite element mesh for Composite pre-slab (S9).	88
Figure 5.11: Applied uniform load and constrains	89
Figure 5.12: Newton-Raphson Iterative Method	90
Figure 6.1: Comparison between experimental and theoretical ultimate load of test	
specimens	91
Figure 6.2: Comparison between experimental and theoretical ultimate shear streng	gth 92
Figure 6.3: Experimental against theoretical vertical deflection curves for Monolith	
slab (S1)	93
Figure 6.4: Experimental against theoretical vertical deflection curves for Pre-slab	(S2)
Figure 6.5: Experimental against theoretical vertical deflection curves for Pre-slab	
Figure 6.6: Experimental against theoretical vertical deflection curves for Pre-slab	(S4)
Figure 6.7: Experimental against theoretical vertical deflection curves for Pre-slab	
Figure 6.8: Experimental against theoretical vertical deflection curves for Pre-slab	(S6)
Figure 6.9: Experimental against theoretical vertical deflection curves for Pre-slab	
	` .
Figure 6.10: Experimental against theoretical vertical deflection curves for Pre-slal	
	96
Figure 6.11: Experimental against theoretical vertical deflection curves for Pre-slal	
(S9)	
Figure 6.12: Contour Lines for Displacement in y-direction for Slab (S1)	
Figure 6.13: Contour Lines for Displacement in y-direction for Slab (S2)	
Figure 6.14: Contour Lines for Displacement in y-direction for Slab (S3)	
Figure 6.15: Contour Lines for Displacement in y-direction for Slab (S4)	
Figure 6.16: Contour Lines for Displacement in y-direction for Slab (S5)	
Figure 6.17: Contour Lines for Displacement in y-direction for Slab (S6)	
Figure 6.18: Contour Lines for Displacement in y-direction for Slab (S7)	
Figure 6.19: Contour Lines for Displacement in y-direction for Slab (S8)	
Figure 6.20: Contour Lines for Displacement in y-direction for Slab (S9)	
Figure 6.21: Cracks Indication on ANSYS	
Figure 6.22: Flexure Cracks for Slab (S1)	
Figure 6.23: Shear Cracks for Slab (S1)	
Figure 6.24: Flexure Cracks for Slab (S2)	
Figure 6.25: Shear Cracks for Slab (S2)	
Figure 6.26: Flexure Cracks for Slab (S3)	
Figure 6.27: Shear Cracks for Slab (S3)	
Figure 6.28: Flexure Cracks for Slab (S4)	
Figure 6.29: Shear Cracks for Slab (S4)	
Figure 6.30: Flexure Cracks for Slab (S5)	
Figure 6.31: Shear Cracks for Slab (S5)	
Figure 6.32: Flexure Cracks for Slab (S6)	
Figure 6.32: Shear Cracks for Slab (S6)	
Figure 6.33: Flexure Cracks for Slab (S7)	
Figure 6.34: Shear Cracks for Slab (S7)	
Figure 6.35: Flexure Cracks for Slab (S8)	

Figure 6.36: Shear Cracks for Slab (S8)	110
Figure 6.37: Flexure Cracks for Slab (\$9)	
Figure 6.38: Shear Cracks for Slab (S9)	111
Figure A.1: Coordinate system for element type SOLID65	
Figure A.2: SOLID65 stress output	118
Figure A.3: Coordinate system for element type LINK8	118
Figure A.4: LINK8 3-D Spar output	119
Figure A.5: CONTA174 coordinate system	119

Abstract

Composite reinforced concrete elements are one of the most used elements in construction for many buildings and structures. Pre-slabs are a type of composite concrete elements that are commonly used in constructing bridges, skyscrapers and buildings.

The pre-slabs are formed of a pre-cast concrete layer that works as a form to shutter the other cast-in-place concrete layer, this type of pre-slabs are very common in applications like strengthen and repairing exciting pre-slabs. Main factors when designing these types of pre-slabs is the shear transfer along the interface, which has a great effect achieving the composite action between concrete layers and making the two layers, work together as one unit which leads to an increase in shear strength and load capacity.

The behavior of two-way composite pre-slabs were investigated in this study, also an experimental test program was done on nine specimens which were simply supported pre-slabs, a monolithic slab was used as reference which was casted as one layer and the other remaining eight slabs were composite pre-slabs composed of two layers with various shear connections between the two layers had been used to test the effectiveness of them.

To accurately investigate the effect of shear dowels length, ratio and also study the effect of changing the interface roughness condition, These eight tested specimens were divided into three different groups which will be discussed later in this study. Also a theoretical analysis was done using (ANSYS) software to confirm the experimental test program and make comparison between experimental and theoretical results.

It was concluded from this research that increasing of shear connectors ratio and length led to a significant improvement in the horizontal shear transfer capacity for the tested pre-slabs and led to an increase in shear strength and load capacity for the tested specimens. Also the interface roughness condition has a great effect on the horizontal shear transfer capacity.