

Ain Shams University Faculty of Engineering Computer and Systems Engineering Department

Prediction-based Clustering Scheme for Vehicular Ad-hoc Networks

A Thesis

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy in Electrical Engineering

(Computer and Systems Engineering)

Submitted by

Eng. Islam Tharwat Abdel Halim Abdel Alim Master of Science in Electrical Engineering (Computer and Systems Engineering)

Faculty of Engineering, Ain Shams University, 2011

Supervised by

Prof. Dr. Hossam Mahmoud Ahmed Fahmy Prof. Dr. Ayman Mohamed Bahaa-ElDin Sadeq

> Cairo – Egypt 2019

Ain Shams University Faculty of Engineering Computer and Systems Engineering Department

Approval Sheet

Name: Islam Tharwat Abdel Halim Abdel Alim

Thesis: Prediction-based Clustering Scheme for Vehicular Ad-hoc Networks

Degree: Doctor of Philosophy in Electrical Engineering

(Computer and Systems Engineering)

Examiners' Committee

Name and Affiliation	Signature
1- Prof. Dr. Joel J. P. C. Rodrigues National Institute of Telecommunications (Inatel), Brazil	
2- Prof. Dr. Yasser Hesham Dakroury President of the National Egyptian E-learning University (EELU), Egypt	
3- Prof. Dr. Hossam Mahmoud Ahmed Fahmy Faculty of Engineering, Ain Shams University, Egypt	
4- Prof. Dr. Ayman Mohamed Bahaa-Eldin Sadeq Faculty of Engineering, Ain Shams University, Egypt	

Examination Date: ... / ... /

Statement

This thesis is submitted to Ain Shams University in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis was carried out by the author at Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other scientific entity.

Islam Tharwat Abdel Halim Abdel Alim Computer and Systems Engineering Department Faculty of Engineering Ain Shams University Cairo, Egypt 2019

Signature
 Date: / /

Researcher Data

Name: Islam Tharwat Abdel Halim Abdel Alim

Date of birth: 1/11/1982

Place of birth: Cairo

Last academic degree: Master of Science

Field of specialization: Electrical Engineering

University issued the degree: Ain Shams University

Date of issued degree: 24/8/2011

Thesis Summary

Islam Tharwat Abdel Halim Abdel Alim

Prediction-based Clustering Scheme for Vehicular Ad-hoc Networks

Doctor of Philosophy in Electrical Engineering (Computer and Systems Engineering)

Ain Shams University, 2019

Vehicular Ad-hoc Networks (VANETs) are a subclass of Mobile Ad-hoc Networks (MANETs) and the general characteristics of VANETs are typically inherited from MANETs. However, VANETs exhibit several unique characteristics such as the large scale of the network, high mobility, and dynamic network topology. Hence, VANETs unique characteristics might cause frequent disconnections of the communication links resulting in an increased overhead of the communication protocols in terms of extra messages and time delay. Therefore, VANETs face diverse considerable challenges that instigate developing efficient communication protocols.

Creating a hierarchical structure by clustering is widely introduced as an emerging research topic in VANETs to make the network topology less dynamic, maintain a level of coordination between neighboring vehicles, and hence improve the networks overall performance. Typically, clustering is achieved by partitioning the network into smaller groups that are called clusters. A cluster is composed of a cluster head (*CH*) and cluster members (*CMs*); the *CH* is chosen among the *CMs* to manage the cluster and coordinate between the members of the cluster, while the remaining *CMs* locally communicate with their associated *CH*.

From another perspective, predicting the future movements of the vehicles is possible due to the restrictions of the road topology, urban layout, and traffic constraints. Hence, the accurate prediction of the vehicles future movements could play a crucial role for both building efficient vehicular communication protocols and enhancing the vehicular transportation systems.

Thus, this thesis is concerned with two major contributions. The first one is to follow the guidelines of systematic literature reviews in order to provide a premier and unbiased survey of the existing mobility prediction-based protocols for VANETs and develop novel taxonomies of those protocols based on their main prediction applications and objectives. Whereas the second contribution of this work is to develop an efficient clustering scheme for VANETs that benefits from the ability to predict the vehicles future movements.

In this thesis, the mobility prediction in VANETs is briefly reviewed with reference to their prediction aims, techniques, use cases, and challenges. Also, each category is discussed with a focus on the prerequisites, advantages, and limitations. In order to figure out the potential usefulness of the mobility prediction in VANETs, usage and performance analysis of the mobility prediction are provided. Additionally, a derivation is provided for the appropriateness of utilizing each prediction aim/technique for the varied use cases.

On the other side, a novel mobility prediction-based efficient clustering scheme (MPECS) is proposed to provide a more stable cluster architecture for VANETs with minimal clustering cost. An analytical analysis is discussed to explore the parameters set that improve the overall performance of MPECS. Also, performance evaluation via simulation is presented to evaluate MPECS compared to four existing clustering schemes for VANETs. The conducted evaluations show a close agreement between simulation and analytical results and demonstrate that MPECS can significantly improve the stability of the clustering architecture with minimal overhead. Finally, our conclusion and the future work are presented.

Keywords:

Mobility prediction, Applications, Objectives, Clustering, Voronoi diagram, VANETs.

Acknowledgment

All praise is due to **Allah** (**God**), most merciful, and the lord of the worlds, who taught man what he knew. I would like to thank **Allah** almighty for bestowing upon me the chance, strength, and ability to complete this work.

I wish to express my gratitude to **Prof. Dr. Hossam M.A. Fahmy** for his humongous unconditional help, caring, valuable guidance and continuous support. He has generously devoted to me much of his knowledge and time, and I deeply acknowledge him for that. I have learned so much from his rigorous research attitude, innovative thinking, and efficient work style. **Prof. Dr. Hossam Fahmy** inspired me a sense of enthusiasm, optimism, and motivation. I am truly proud to have him as my supervisor. No words can express my appreciation to him and I will always be very grateful to him for my whole life.

I want to extend my greatest gratitude to **Prof. Dr. Ayman M. Bahaa-Eldin** for his great support, professional supervision, and profound understanding. He offered me so much advice and guided me all the way through my graduate study. Without his valuable thoughts, recommendations and patience, I would have never been able to complete this work.

My kind parents, I cannot get enough thanking both of you for being so supportive, materially and morally. Without your love, kindness, and prayers, I would never have reached what I am today. I wish you were here with me. I am pretty sure that you would be so proud of your son.

My little daughters, lovely wife and sisters, I am in no way capable of appropriately thanking you for your unconditional love and unlimited support. Now, it is time to dedicate this work to all of you.

Islam Tharwat Abdel Halim Abdel Alim Computer and Systems Engineering Department Faculty of Engineering Ain Shams University Cairo, Egypt 2019

Contents

Li	st of Figures	viii
Li	st of Tables	x
Li	st of Abbreviations	xi
Li	st of Symbols	xiv
PAl	RT ONE	
1	Thesis Introduction	1
	1.1 Motivation	2
	1.2 Problem Statement	3
	1.3 Thesis Contributions	5
	1.4 Thesis Organization	6
2	Overview of VANETs	7
	2.1 Mobile Ad-hoc Networks (MANETs)	8
	2.2 Evolution of VANETs	10
	2.3 Architecture of VANETs	12
	2.4 Standards and Regulations of VANETs	14
	2.5 Characteristics of VANETs	19
	2.6 Challenges of VANETs	20
	2.7 Mobility Models of VANETs	21
	2.8 Applications of VANETs	23
	2.9 Summary	25
3	Background and Related Work	29
	3.1 Internet Access and Mobile Data Offloading in VANETs	29
	3.2 Connected and Automated Vehicles (CAVs)	31

3.3 Routing Protocols in VANETs	33
3.3.1 Proactive and Reactive Routing	34
3.3.2 Opportunistic and Non-Opportunistic Routing	35
3.3.3 Anchor-based and Node-based Routing	36
3.3.4 Source Routing and Distributed Routing	36
3.3.5 Offline Information-based Routing and Real-time Information-based Routing	36
3.4 Clustering Techniques in VANETs	37
3.4.1 Anatomy of a Clustering Algorithm	38
3.4.2 Performance Metrics of a Clustering Algorithm	40
3.4.3 A Review of Clustering Techniques Used in VANETs	41
3.5 Summary	44
PART TWO	
Duadiction based Duatocals for Vahioulan Ad Has Naturalisa Suprov	
4 Prediction-based Protocols for Vehicular Ad Hoc Networks: Survey and Taxonomy	45
4	45
4 and Taxonomy	
and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs	46
4 and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs 4.2 Research Methodology	46 48
4 and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs 4.2 Research Methodology 4.2.1 Identification of Resource	46 48 50
4 and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs 4.2 Research Methodology 4.2.1 Identification of Resource 4.2.2 Selection of Studies	46 48 50 50
4 and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs 4.2 Research Methodology	46 48 50 50 51
4 and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs 4.2 Research Methodology	46 48 50 50 51 51
4 and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs 4.2 Research Methodology	46 48 50 50 51 51 54
4 and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs 4.2 Research Methodology	46 48 50 50 51 51 54 55
4 and Taxonomy 4.1 Prediction of Vehicles Movements in VANETs 4.2 Research Methodology 4.2.1 Identification of Resource 4.2.2 Selection of Studies 4.2.3 Data Extraction and Synthesis 4.3 Taxonomy of Prediction-based Protocols in VANETs Based on their Applications 4.3.1 Routing 4.3.2 Data Forwarding 4.3.3 Traffic Management	46 48 50 50 51 51 54 55

	4.4.1 Link Stability Prediction	59
	4.4.2 Position Prediction	62
	4.4.3 Trajectory Prediction	65
	4.4.4 Travelling Time Prediction	69
	4.4.5 Collision Prediction	71
	4.5 Summary	73
5	Usage Analysis, Performance Comparisons, and Research Challenges	74
	5.1 Usage Analysis	74
	5.2 Performance Comparisons	77
	5.3 Prediction-related Research Challenges in VANETs	82
	5.4 Summary	84
PAl	RT THREE	
6	Mobility Prediction-based Efficient Clustering Scheme (MPECS)	85
	6.1 System Model	86
	6.1.1 Network Model	86
	6.1.2 Vehicle Model	86
	6.1.3 Area Partitioning	87
	6.2 Problem Formulation	88
	6.3 Theoretical Basis of MPECS	90
	6.3.1 Vehicle Residual Longevity (VRL)	90
	6.3.2 Vehicle Cost (VC)	95
	6.3.3 Vehicle Lifetime Value (VLV)	97
	6.4 MPECS Processing	98
	6.5 Some Potential Use Cases for MPECS in CAVs	100
	6.5.1. Cooperative Autonomous Driving	100

	6.5.2 Platooning of CAVs	100
	6.5.3 Target Tracking	101
	6.5.4 Internet of intelligent vehicles (IoIV)	101
	6.6 Summary	101
7	Performance Evaluation of MPECS	103
	7.1 Theoretical Evaluation	103
	7.1.1 Average <i>CH</i> Lifetime	105
	7.1.2 Average Rate of <i>CH</i> Changes	106
	7.1.3 Average <i>CM</i> Lifetime	106
	7.1.4 Average Clustering Overhead	107
	7.1.5 Computational Complexity of MPECS	108
	7.2 Simulation Evaluation	111
	7.2.1 Simulation Setup	112
	7.2.2 Performance Metrics	114
	7.2.3 Prediction Accuracy	114
	7.2.4 Average <i>CH</i> Lifetime	116
	7.2.5 Average Rate of <i>CH</i> Changes	119
	7.2.6 Average CM Lifetime	123
	7.2.7 Average Clustering Overhead	126
	7.3 Summary	129
8	Conclusion and Future Work	130
	References	133

List of Figures

1.1	The number of publications of the mobility prediction-based articles for VANETs in relevant scientific sources over the period 2007-2017	3
1.2	Basic clustering procedure	4
2.1	Hierarchy of wireless ad-hoc networks	8
2.2	Example of transmitting a message in an ad hoc network	9
2.3	Components of an intelligent vehicle	12
2.4	ITSs V2X communications	13
2.5	Equipment for vehicular communication	14
2.6	DSRC spectrum allocation worldwide	15
2.7	DSRC spectrum band and channels	16
2.8	WAVE, IEEE P1609, IEEE 802.11, and the OSI reference model	18
2.9	Categories of mobility models in VANETs	22
2.10	Categorization of VANETs applications	24
3.1	Taxonomy of routing protocols in VANETs	34
3.2	Basic flow of a clustering algorithm	39
4.1 4.2	Influence of predicting the future movements of the vehicles on the selection of the optimal relay vehicle	47
4.2 4.3	The process flow for the survey methodology	48
4.3 4.4	Applications of the prediction-based protocols in VANETs	49
4.4 4.5	Prediction objectives of the prediction-based protocols in VANETs	51
4 .5	Usage analysis of the reviewed prediction-based protocols	57
5.2	Distribution of scenarios with respect to the prediction objectives	75 -
5.3	Distribution of applications with respect to the prediction objectives	76
6.1	Area partition for a part of Cairo city	76
	CH selection between two candidate vehicles	88
6.2 6.3	Example of a vehicle moving at initial speed v and initial direction θ	91
6.4	The basic flow of MPECS	94
U. T	THE DUSTE HOW ULIVITATED	uα

7.1	Example of an area with two speed levels (v_1, v_2) and two paths (p_1, p_2)	105
7.2	CH selection procedure	108
7.3	The procedure of generating .tcl file for realistic road map	111
7.4	Area partitioning for Downtown region of Cairo city	113
7.5	Area partitioning for 5 th Settlement region of Cairo city	113
7.6	Prediction accuracy	115
7.7	Average CH lifetime for 5 th Settlement region	117
7.8	Average CH lifetime for Downtown region	118
7.9	Average rate of CH changes for 5 th Settlement region	121
7.10	Average rate of CH changes for Downtown region	122
7.11	Average CM lifetime for 5 th Settlement region	124
7.12	Average CM lifetime for Downtown region	125
7.13	Average clustering overhead for 5 th Settlement region	127
7.14	Average clustering overhead for Downtown region	128

List of Tables

2.1	PHY parameters used in IEEE 802.11a and 802.11p	17
2.2	Main characteristics of IEEE WAVE	18
2.3	Road safety applications and requirements for ETSI	26
2.4	Traffic management applications and requirements for ETSI	27
2.5	Infotainment applications and requirements for ETSI	28
4.1	List of the prediction-based protocols grouped by their main application	52
4.2	List of the prediction-based protocols grouped by their main prediction objective	58
5.1	Categories of the performance metrics results	78
5.2	Performance evaluation of reactive, position-based, multicast, and geocast routing/data forwarding predictive protocols	79
5.3	Average evaluation of each prediction objective category with respect to the various applications	81
5.4	Performance evaluation of safety predictive protocols	81
5.5	Performance evaluation of traffic management and general purpose predictive protocols	82
7.1	Simulation parameters	111

List of Abbreviations

ACAR Anchor-based Connectivity Aware Routing

AODV Ad-hoc On-demand Distance Vector Routing

AP Access Point

ASTM American Society for Testing and Material

AU Application Unit
AV Automated Vehicle
BP Beacon Periodicity

CAV Connected and Automated Vehicle

CH Cluster Head

CM Cluster Member

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CV Connected Vehicle

DCF Distributed Coordination Function

DSR Dynamic Source Routing

DSRC Dedicated Short-Range Communication

DTNs Delay Tolerant Networks
ECN Electronic Chassis Number
ELP Electronic License Plate

EMA Exponential Moving Average

ETSI European Telecommunications Standards Institute

ETX Expected Transmission Count

FHWA Federal Highway Administration

FSR Fisheye State Routing

GMM Gauss-Markov Mobility

GPRS General Packet Radio Services
GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing