Prevalence of Plasma Cell Free DNA and its Prognostic Role in Systemic Lupus Erythematous Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Karim Mohamed Saeed Elshourbagy

MBBCh., Ain Shams University

Supervised by

Prof./ Yasser Zeitoun

Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Prof./ Dina Elshennawy

Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Dr./ Neama Lotfy Mohamed

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost thanks to **Allah**, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Or. Usasser Zeitoun**, Professor Clinical Pathology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Dina El Shennawy,** Professor of Clinical Pathology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Meama Mohamed Lotfy,** Assistant Professor of Clinical Pathology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Karim Mohamed Saeed El shourbagy

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	
Review of Literature	
Pathogenesis of SLE	4
Circulating (cell free) DNA in diagnosis of seven human diseases	
Subjects and Methods	49
Results	59
Discussion	85
Summary and Conclusion	93
References	95
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	American College of Rheumatology (A criteria for the classification of systellupus erythematosus	emic
Table (2):	Systemic Lupus Erythematosus Dise Activity Index (SLEDAI)	
Table (3):	British Isles Lupus Assessment Gr (BILAG) Index	_
Table (4):	Systemic Lupus Activity Measure (SL. Index	
Table (5):	European Consensus Lupus Acti Measurement (ECLAM)	
Table (6):	Systemic Lupus Internation Collaborating Clinic/American Colleg Rheumatology (SLICC/ACR) Dam Index	e of
Table (7):	The PCR reaction mix (Total volume on µL) is shown in the following table	
Table (8):	Thermal cycler programming amplification shown in the following ta	for
Table (9):	Descriptive and comparative statistic the groups in the study	
Table (10):	Descriptive data of the 3 studied group	os62
Table (11):	Descriptive Clinical Data in the Students	
Table (12):	Comparison between studied groups regard CBC	
Table (13):	Post-Hoc test for comparison betw studied groups as regard CBC parame (TLC. Hb and platelets)	veen eters

List of Tables (Cont...)

Table No.	Title	Page No.
Table (14):	Comparison between studied groups regard CRP	
Table (15):	Comparison between studied groups regard ESR	as 69
Table (16):	Post-Hoc test for comparison betw studied groups as regard ESR	
Table (17):	Comparison between studied groups regard C3 and C4	
Table (18):	Post-Hoc test for comparison between studied groups as regard C3 and C4	
Table (19):	Comparison between patient groups and Ib) as regard Anti-DNA titre	
Table (20):	Comparison between patient groups and Ib) as regard ANA	
Table (21):	Comparison between studied groups regard cf- DNA (CT)	
Table (22):	Post-Hoc test for comparison between studied groups as regard cf- DNA (CT)	
Table (23):	Correlation study between cf- DNA (and ANA & Anti-DNA) in group Ia	
Table (24):	Correlation study between cf- DNA (and (ANA & Anti-DNA) in patients	s of
	group Ib	83

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Role of neutrophils and ldgs is pathogenesis of sle and associated damage, upon exposure to organisms, damaged ceoo proimmune complexes and other a unidentified stimuli, neutrophils ar undergo Netosis	organ micro oducts, as yet ad ldgs	q
Figure (2):	Schemic presentation of various pat by which nucleic acids are release circulation. Other nucleated cells i T-cells, haematopoitic cells, etc	thways ed into nclude	
Figure (3):	Comparison between studied grownegard age	aps as	
Figure (4):	Comparison between studied ground regard sex.	aps as	
Figure (5):	Comparison between studied grownegard Total leucocytic count	ups as	
Figure (6):	Comparison between studied grownegard lymphocytes	aps as	
Figure (7):	Comparison between studied grownegard Hemoglobin.	aps as	
Figure (8):	Comparison between studied grownegard Platelets	-	67
Figure (9):	Comparison between studied grownegard CRP	-	68
Figure (10):	Comparison between studied grownegard ESR.	aps as	
Figure (11):	Comparison between studied grownegard C3.	ups as	
Figure (12):	Comparison between studied grownegard C4.	ups as	
Figure (13):	Comparison between patient ground and Ib) as regard anti – DNA titre	ıps (Ia	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Comparison between patient group	
	and Ib) as regard ANA.	75
Figure (15):	Comparison between patient groups (Is	a and
	Ib) as regard ANA.	75
Figure (16):	Comparison between studied group	os as
	regard cf- DNA (CT)	76
Figure (17):	ROC curve of cf- DNA (CT) bet	ween
	patient and control groups	77
Figure (18):	ROC curve between group Ia and gro	up II
J	as regard cf- DNA (CT)	79
Figure (19):	ROC curve between group II and gro	up Ib
G	as regard cf- DNA (CT)	80
Figure (20):	Negative correlation between cf-	DNA
8	(CT) and ANA in patients of group Ia.	
Figure (21):	Negative correlation between cf-	
1 180110 (21)	(CT) and Anti-DNA in patients of g	
	Ta.	82
Figure (22).	Negative correlation between cf-	
1 15410 (22).	(CT) and ANA in patients of group Ib.	
Figure (22).	Negative correlation between cf-	
rigure (20):	<u> </u>	
	(CT) and Anti-DNA in patients of g	group 84
	ID.	04

List of Abbreviations

Abb.	Full term
ACR:	American College of Rheumatology.
ADCC	Antibody dependent cell mediated cytotoxicity.
AICD	Activation induced cell death.
<i>AIH</i> :	Auto immune hepatitis.
ANA:	Antinuclear antibody.
ANCA:	Antibodies to neutrophil cytoplasmic antibodies
Anti p:	Antibodies and phosphoprotein antibodies.
anti-ds DNA :	Anti-double stranded DNA
Anti-Sm:	Anti-Smith.
<i>APC</i> :	Antigen presenting cell.
<i>ApL</i> :	Antiphospholipids.
BAFF:	B-cell activating factor.
BcL-2:	Anti apoptotic molecule.
BCR:	B cell receptor.
<i>BILAG</i> :	British Isles Lupus Assessment Group.
<i>C</i> :	Complement protein.
<i>CAD</i> :	Coronary artery disease
<i>CD</i> :	Cluster of differentiation.
cf-DNA:	Cell free deoxyribonucleic acid.
CK	Creatine kinase.
<i>CLIF</i> :	Crithidia luciliae immunofluorescence.
<i>CNA</i> :	Circulating nucleic acids.
CNS:	Central Nervous system.
CTLA4:	Common T-lymphocyte antigen 4.
DAS28:	Disease activity score of 28 joints.
DCs:	Dendritic cells
<i>DIL</i> :	Drug induced lupus
ds-DNA:	Double stranded DNA.
ds-RNA:	$Double\ stranded\ RNA.$
<i>EBV</i> :	Epstein Barr Virus.
ECLAM:	European Consensus Lupus Activity measurement.

List of Abbreviations (cont...)

Abb.	Full term
ELISA:	Enzyme linked immunosorbent assay.
ENA:	Extractable nuclear antigen.
EPCs:	Endothelial progenitor cells.
ER_{β} :	Esterogen receptor β
ER_{α} :	Estrogen receptor α
<i>FARR</i> :	Radio immunoassay for anti – DNA.
FcγRIIa:	Low affinity immunoglobulin – γ Fc region receptor.
G CSF:	Granulocytes colony stimulating factor.
GCs:	Germinal centers.
GCSF-R:	G-CSF receptor.
<i>GMCSF:</i>	Granulocytes macrophage colony stimulating factor.
<i>HEP</i> :	Human epithelial tissue.
<i>IC</i> :	Immune complex
<i>ICOS</i>	$Inducable\ co-stimulator.$
<i>IFN-R</i> :	IFN receptor.
<i>IFNs</i> :	I interferons
<i>IIF:</i>	$In direct\ immun of luorescence.$
<i>IL37:</i>	Interleukin 37.
<i>INF</i> :	Interferon.
<i>ITAMs</i> :	$Immunor eceptor\ based\ activation\ motifs.$
<i>ITIM</i>	Immunoreceptor tyrosine inhibitory motif.
<i>LDG</i> :	Low density granulocytes.
<i>MBL</i> :	Mannose binding lectin.
<i>mDC</i> :	Myeloid dendritic cell.
<i>MI</i> :	$Myocardial\ infarction.$
<i>MPO</i>	Myeloperoxidase.
<i>MRI</i> :	Magnetic resonance image.
<i>NET</i> :	$Neutrophil\ extracellular\ trap$
NETosis:	Extracellular traps formed by neutrophils.
<i>NETs</i> :	Neutrophil extended traps.

List of Abbreviations (Cont...)

Abb.	Full term
NMDA:	N-methyl-D-aspartate.
<i>OxLDL</i> :	Oxidized low density lipoprotein.
<i>PBMCs</i> :	Peripheral blood mononuclear cells
<i>PDCs:</i>	Plasmacytoid denderitic cells.
PTPN22:	Protein tyrosine phosphatase N22
<i>RA</i> :	Rheumatoid arthritis.
<i>RNA</i> :	Ribonucleic acid.
<i>RNP</i> :	$Ribonucle oprotein. \ \ $
SCLE:	Sub acute cutaneous lupus erythematosus.
<i>SLAM:</i>	Systemic lupus activity measures.
<i>SLE</i> :	Systemic lupus erythematosus.
SLEDAI:	Systemic lupus erythematosus disease activity index.
<i>SLICC:</i>	Systemic lupus international collaborating clinics.
Sn RNP:	Small nuclear ribonucleoprotein.
SS:	Systemic sclerosis.
SS-DNA:	Single stranded DNA.
<i>TCR</i> :	T cell receptor.
<i>Tfh:</i>	T follicular helper.
TGF_{β} :	Transforming growth factor- β .
<i>TLR</i> :	Toll like receptor.
TNF_{α} :	Tumor necrosis factor α.
<i>WB</i> :	Western blot.

Introduction

ystemic lupus erythematosus (SLE) is a prototypic autoimmune disease with a complex pathogenesis involving multiple genetic and environmental factors. The disease is characterized by enhanced autoantibody production, abnormalities in function of immune-inflammatory system and inflammatory manifestations in several organs (Young et al., 2009).

The clinical course of lupus disease usually occurs in exacerbation and remission pattern. It may involve virtually any organ system and have a wide range of disease severity. Clinical presentations of SLE may be in the form of fatigue, weight loss or fever in the absence of infection, butterfly rash, photosensitivity rash, musculoskeletal problems (arthritis, myositis or arthralgia), renal problems (proteinuria, haematuria, cellular casts or nephritic syndrome), hematological problems (thrombocytopenia, anemia or leucopenia) (Uzuelli et al., 2009).

Cell death has been regarded as an important event in lupus pathogenesis as it leads to release of antigens as nucleic acids for immune complex formation. DNA-antibody complexes in the circulation are one of the hallmarks of SLE that leads to events such as complement activation, immune complex deposition, cytokine release and many other detrimental effects causing manifestations of SLE. Fluctuation in circulating DNA level might be one of the driving factors behind flare-ups of SLE (Chen, 2010).

Circulating cell-free deoxyribonucleic acid (cf-DNA), defined as extracellular DNA occurring in blood serum or plasma, present in only limited amounts in healthy individuals, since dying cells and remnants of dead cells are efficiently removed, mainly in the liver. Reactive oxygen species are implicated as a cause of damage to DNA, including breaking of single and double strands, releasing of free nucleobases, chemical changes of nucleobases, and modification of sugar moieties (Su and Pisetsky, 2009).

Circulating cf-DNA has been widely studied and is considered as a potential biomarker for the detection and monitoring of various human diseases such as stroke, myocardial infarction, sepsis, acute pancreatitis, as well as cancer. Analyzing and quantitating cell-free plasma DNA could serve as a valuable diagnostic tool (Rainer et al., 2003).

AIM OF THE WORK

o estimate the prevalence of plasma cf - DNA in SLE patients and evaluate it as a prognostic marker in comparison to anti double stranded DNA-titre.

Chapter 1

PATHOGENESIS OF SLE

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease of unclear etiology that affects multiple organs and afflicts mostly women of childbearing age. The development of SLE is attributed to disruptions in adaptive immunity, triggered by genetic predisposing factors and various environmental insults, which lead to the loss of tolerance of self antigens. Indeed, the development and progression of SLE require T-lymphocytes and B-lymphocytes, which highlights the key role of autoimmune reactivity in this disease (*Dorner et al., 2011*).

a) Role of innate immunity in pathogenesis of SLE

Evidence over the past decade indicates that patients with SLE also have profound disruption in innate immunity that could play a crucial part in the initiation and perpetuation of the disease, as well as in the development of organ damage. Abnormalities in the phenotype and function of monocytes, macrophages, dendritic cells (DCs), and other cellular and humoral components of the innate immune system have been clearly identified in patients with SLE. These defects might be involved in key events in the pathogenesis of SLE, including regulation of cell death, presentation of putative autoantigens and synthesis of type I interferons (IFNs) (Moulton et al., 2017).