CONSTRUCTION OF CERTAIN IMPROVED FUNGAL BIOCONTROL AGENT AGAINST SOME PLANT FUNGAL DISEASES

By

NADA KHALED ABD EL-AZIZ

B.Sc. Agric. sci. (Biotechnology), Ain Shams Univ., 2012

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

MASTER OF SCIENCE

in

Agricultural Sciences

(Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval sheet

CONSTRUCTION OF CERTAIN IMPROVED FUNGAL BIOCONTROL AGENT AGAINST SOME PLANT FUNGAL DISEASES

By

NADA KHALED ABD EL-AZIZ

B.Sc. Agric. sci. (Biotechnology), Ain Shams Univ., 2013

This thesis for M.Sc. degree has been approved by:

Date of examination: 19/2/2019

Dr. Ashraf Gamil Attallah	ı
Researcher Prof. of mo	lecular Genetics, National Research Center.
Dr. Aly Zain Elabidin Abo	del-Salam
Professor Emeritus of University.	Genetics, Faculty of Agriculture, Ain Shams
Dr. Ashraf Bakry Abdel -	Razik
Professor of Genetics,	Faculty of Agriculture, Ain Shams University.
Dr. Samir Abdel-Aziz Ibra	a him
	Genetics, Faculty of Agriculture, Ain Shams
University.	

CONSTRUCTION OF CERTAIN IMPROVED FUNGAL BIOCONTROL AGENT AGAINST SOME PLANT FUNGAL DISEASES

By

NADA KHALED ABD EL-AZIZ

B.Sc. Agric. sci. (Biotechnology), Ain Shams Univ., 2012

Under the supervision of:

Dr. Samir Abdel-Aziz Ibrahim

Professor Emeritus of Genetics, Faculty of Agriculture, Ain Shams University (principal supervisor).

Dr. Ashraf Bakry Abdel -Razik

Professor of Genetics, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Nada Khaled Abd El- Aziz: construction of certain improved fungal bio control agent against some plant fungal diseases. Unpublished M.sc., thesis, Department of Genetic, Faculty of Agriculture, Ain Shams University, 2019.

Four strains of *Trichoderma* (T1 , T2, T3 and T4) Belong to two species *Trichoderma harzianum* (T1) and *Trichoderma viride* (T2, T3 and T4) were tested against plant pathogenic fungus (*Rhizoctonia solani* , *Pythium* sp *and Fusarium oxysporum*). *In vitro* Test of the previous isolates that the T1 and T2 is most efficient strains. All isolates were evaluated for production of chitinases and β -1,3-glucanase. Using colloidal chitin as a substrate, *Trichoderma harzianum* (T1) strain was the most efficient in chitinase activity (160 \pm 0.64 u/ml/min) , while *Trichoderma viride2* (T2) strain was the most efficient in (225 \pm 2.20 u/ml/min).

The selected strains have been mutagenize to obtain variants capable to producing high levels of chitinase and β -1,3-glucanase by using UV (ultraviolet irradiation) 254 nm, CAMAG light, type TL-9001) in two steps mutagenize. Six mutants from strain (T1) and five from parental strain (T2).

The best strain in antagonism on the three pathogens after mutation was *Trichoderma harzianum* (T112). This improvement in extracellular enzyme production by mutant *Trichoderma harizanum*.

KEYWORDS: Genetic improvement, *Trichoderma*, biocontrol,

chitinase, β -1,3-glucanase,UV irradiation, ISSR-PCR.

ACKNOWLEDGEMENT

I wish to express my deepest thanks to Allah who fulfilled my hopes and promises to offer every possible support for anyone in need to it".

I'm deeply indebted to thank the principle supervisor **Prof. Dr. Samir Abd El-Aziz Ibrahim**, who introduced me to the wonderful world of *Trichoderma*, for guidance and helpful discussions and constructive criticism.

I also wish to express my gratitude to the supervisor **Dr. Ashraf Bakry Abd El-Razik** for providing and funded me with a challenging and interesting project to develop my investigation and analytical skills. Without his help and effort, my research would have never been completed in time.

My thanks have to be extended to all my colleagues in (ACGEB) for their sincere help. Thanks to stuff members of Genetics Dept. Faculty of Agriculture, Ain Shams Univ., for their encouragement during the progress of this study, specially my best friend **Mai Mahmoud**.

Special thanks to my father **prof. Dr. Khaled Abdel Aziz Abd El- Atey Soliman** for his great efforts not only in my study but also in my life.

Finally, I could never have reached this point without the love support from my family. I do not have enough words to say how I am indebted to my **mother**, my sister **Maha**, my brother **Anwar** and my fiancé **Ashraf Magdy** for their continuous incentive support.

CONTENTS

	Title	Page
	List of Tables	V
	List of Figures	VII
	Introduction	1
	Review of literature	3
1.	Fungal root rots	3
2.	Management strategies for root rot	6
3.	Biological control	8
3.1.	Biological control agents(BCAs)	10
3.2.	Biological control mechanisms	11
3.2.1.	Competition	12
3.2.2.	Antibiosis	13
3.2.3.	Mycoparasitism	14
4.	Biocontrol genes and their function <i>Trichoderma</i> species	16
5.	Hydrolytic enzymes of <i>Trichoderma</i> involved in mycoparasitism.	17
5.1.	Chitinases	17
5.2.	β-1,3-glucanase	19
6.	Indirect mechanism of action	20
6.1.	Induced resistance	20
6.2.	Plant growth promotion	20
7.	Induction of mutation in wild strain of <i>Trichoderma</i> spp	20
8.	Antagonistic properties of <i>Trichoderma</i> isolates	21
9.	Morphological identification of <i>Trichoderma</i> isolates	26
	Material and methods	29
	Material	29
1.	Soil sample and sites	29
2.	Pathogenic fungi	30
3.	Media composition	30
3.1.	Potato dextrose agar medium (PDA)	30
3.2.	Special nutrient agar (SNA)	30
3.3.	Czapeck-Dox medium	30

4.	Solution and buffers used in DNA extraction	31
4.1.	Extraction buffer	31
4.2.	TE buffer	31
4.3.	Ethidium bromide (10 mg/ ml)	31
4.4.	Loading buffer(6x)	31
4.5.	Buffer for chitinases	31
4.5.1.	Reagent 1	31
4.5.2.	Reagent 2	31
4.5.3.	Reagent 3	32
4.6.	Phosphate buffer	32
4.7.	Buffers for β -1,3-glucanase	32
	Methods	32
1.	Isolation of identification of Trichoderma SPP	32
2.	Isolation of pathogens	33
3.	Identification of Trichoderma	33
3.1.	Phenotype characterization	33
4.	Genomic DNA isolation	34
4.1.	PCR amplification of its region of <i>Trichoderma</i> species	36
4.2.	Gel analyses	36
5.	Biological control potential of Trichoderma	36
5.1	Antagonism of fungi on pathogenic	36
5.1.1.	In vitro antagonistic effect of Trichoderma spp.	
	against Rhizoctonia solani	36
5.1.2.	In vitro antagonistic effect of Trichoderma spp.	
	against F. oxysporum	37
5.1.3.	In vitro antagonistic effect of Trichoderma spp.	
	against Pythium	37
6.	Biochemical determinations	38
6.1.	Preparation of enzyme sources	38
6.2.	Production and assay of chitinase	38
6.2.1.	Preparation of colloidal chitin	38
6.2.2.	Preparation of chitinase	39

6.2.3.	Enzyme unit of chitinases	39
6.3.	Production and assay of β-1,3-glucanase	39
6.3.1.	Screening <i>Trichoderma</i> isolates for β-1,3- glucanase activity	39
6.3.2.	preparation of β- 1, 3-Glucanase	40
6.4.	Statistical analysis	40
7.	Genetic improvement	40
7.1.	Mutagenesis and screening of mutation	40
	Results and discussion	42
1.	Isolation and identification of Trichoderma spp	42
2.	Antagonistic activity	46
3.	Screening of the isolated <i>Trichoderma</i> spp. for enzyme activity.	48
3.1.	Production and assay of chitinase activity	48
3.2.	Production and assay of β -1,3-glucanase and activity	49
4.	Genetic improvement of <i>Trichoderma</i> spp	50
4.1.	Mutagenesis and screening of mutation in <i>Trichoderma</i> spp	50
4.2.	Biochemical determinations after mutation with UV	51
4.2.1.	Chitinase activity enzyme of Trichoderma harzinaum T1) after	
	induction of mutation with UV	51
4.2.2.	β-1,3-Glucanase activity enzyme of <i>Trichoderma harzinaum</i>	
	(T1) after induction of mutation with UV	52
4.2.3.	Mutagenesis and screening of mutation in Trichoderma viride	53
4.2.4.	Chitinase activity enzyme of Trichoderma viride after induction	
	of mutation with UV	53
4.2.5.	β-1,3-Glucanase activity enzyme of <i>Trichoderma viride</i> after	
	induction of mutation with UV	54
5.	Antagonism of fungi on pathogenic after genetic of improvement	55
5.1.	Calculation of percent growth of pathogen	59
6.	Molecular genetic studies based on (ISSR-PCR)	59
6.1.	Primer HB08	60
6.2.	Primer HB10	63
6.3.	Primer HB12	66
6.4.	Primer HB13	69

6.5.	PrimerHB15	72
	Summary	77
	Reference	79
	Arabic summary	

LIST OF TABLES

Title	
Table(1)	Isolates of Trichoderma sp. used in the present study and
	their origin
Table(2)	Morphological characteristics of <i>Trichoderma spp.</i> isolated
	from rhizosphere
Table(3)	List of the inter simple sequence repeats primer names and
	their nucleotide sequences used in the study
Table(4)	Isolates of Trichoderma spp. used in the present study and
	their origin
Table(5)	Morphological characteristics of Trichoderma spp. Isolated
	from rhizosphere
Table(6)	Antagonistic effect of Trichoderma species isolates against
	growth of phytopathogens (Rhizoctonia solani , Pythium
	and Fusarium oxysporum) on PDA in vitro
Table (7)	Assay of chitinase specific activity in Trichoderma culture
	filtrate
Table (8)	Assay of β -1,3-glucanase specific activity in $Trichoderma$
	culture
Table (9)	Spectrophotometric chitinase activity of enzyme (T1
	strains)
Table(10)	Spectrophotometric β - 1, 3-Glucanase activity of enzyme
	(T1 strains)
Table(11)	Spectrophotometric chitinase activity of enzyme (T2, T3
	and T4) strain
Table(12)	Spectrophotometric $\beta\text{-}1,3\text{-}Glucanase}$ activity of enzyme
	(T2,T3 and T4) strain
Table(13)	Effect of T. harizimum (T1) and first mutation strains on
	the growth of three fungal pathogens on PDA medium
Table(14)	Effect of T. viride (T2) and first mutation strains on the
	growth of three fungal pathogens on PDA medium