

Thesis

Submitted for partial fulfillment of Medical Degree in Radio-diagnosis

Presented by
Marwa Sayed Mohammed Moussa

MBBch, MSc,

Supervised By

Prof. Dr. Abeer Abdel maksoud Montaser

Professor of Radio diagnosis
Faculty of Medicine - Ain Shams University

Dr. Samer Malak Botros

Professor of Radio-diagnosis
Faculty of medicine-Ain Shams University

Dr. Yasser Ibrahim Abdel khaleq

Assistant professor of Radio diagnosis Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2019

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Abeer Abdel maksoud Montaser**, Professor of Radio Diagnosis, Faculty of Medicine - Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Samer Malak Botros**, professor of Radio-diagnosis, Faculty of medicine-Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of Assistant Prof.Dr. Yasser Ibrahim Abdel khaleq, Assistant professor of Radio diagnosis, as well as Dr. Aliaa Sheha, lecturer of radiodiagnosis Faculty of Medicine - Ain Shams University niversity for his invaluable efforts, tireless guidance and for his patience and support to get this work into light.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

List of Contents

<u>Title</u>	Page No.
List of Abbreviations	i
List of Tables	
List of Figures	V
Introduction	1
Aim of the work	3
Review of Literature	
Anatomy and radiological consideration of Floor	
Pathology of Pelvic Floor failure	29
Technical aspects of MR defecography	43
MRI Manifestations of Pelvic Floor Dysfunction	ion52
Patients and Methods	85
Results	94
Illustrative cases	106
Discussion	121
Limitations of The Study	137
Summary	138
Conclusion and Recommendations	139
References	140
Arabic Summary	

List of Abbreviations

ARA Anorectal angle

ASUH..... Ain Shams University Hospital

ATFP Arcus tendineus fascia pelvis

ATLA Arcus tendineus levator ani

b-FFE Balanced fast field echo

ES..... External sphincter

ETL Echo train length

FFE..... Fast field echo

FIESTA...... Fast imaging employing steady state

acquisition

FISP Fast imaging with steady state free precession

FLASH..... Fast low angle shot

FOV Field of view

FSE..... Fast spin echo

GRE Gradient Echo

H line Hiatus line

HASTE..... Half-fourier acquisition single shot turbo spin-

echo

HMO H line, M line, organ prolapse

IS Internal sphincter

M Line..... Muscular pelvic floor descent

MPL Mid pubic line

MRI...... Magnetic resonance imaging

NEX Partial signal averaging

ODS Obstructed defecation syndrome

PC..... Pubocervical

PCF Pubocervical fascia

PCL Pubococcygeal line

List of Abbreviations (Cont.)

PD Proton density

POP Pelvic organ prolapse

RF Radio-frequency

SAR..... Specific absorption rate

SE..... Spin echo

SNR..... Signal to noise ratio

SPGR Spoiled gradient echo

SSH-TSE..... Single-shot turbo spin echo

SSFP..... Steady state free precession

SUI Stress Urinary Incontinence

SSFSE Single Shot Fast Spin Echo

TE..... Time to echo

TR Time to repeat

TSE Turbo spin echo

UB Urinary bladder

UD..... Uterine descent

VCUG Voiding cystourethrography

List of Tables

Table	Title	Page
1	Grades of uterine prolapse	36
2	Recommended MR imaging protocol.	52
3	Grading of Pelvic Floor Relaxation using H-	68
	Line and M-Line as Measured During Maximal	
	Straining or Defecation.	
4	Grading of Pelvic Organ Prolapse Relative to	69
	PCL.	
5	Shows the demographic data.	94
6	Shows the obstetric history of the included	96
	female patients and other relevant history data	
	of the total included patients.	
7	Shows patient complaint.	97
8	Shows detailed patient complaint as regard the	97
	defecatory problem.	
9	Physical Examination Findings in included	98
	patients.	
10	MRI findings regarding Cystocele, Rectocele,	99
	Uterine descent and enterocele in included	
	patients.	
11	MRI findings regarding the anterior	100
- 10	compartment with relation to urinary symptoms.	101
12	MRI findings regarding the posterior	101
12	compartment with relation to symptoms.	101
13	MRI findings regarding the posterior	101
	compartment with relation to defecatory	
	problems other than fecal incontinent.	

List of Tables (Cont.)

Table	Title	Page
14	MRI findings regarding the posterior	102
	compartment in relation to fecal incontinence	
	symptom.	
15	MRI multi-compartment findings in the included	102
	patients.	
16	MRI Findings Regarding other Pelvic Floor	103
	Dysfunction findings in included patients.	
17	Shows Agreement between Physical	104
	Examination and MRI Findings.	
18	showing the agreement between urodynamics	105
	and MRI Findings Regarding posterior	
	Compartment in included patients.	

List of Figures

Figure	Title	Page
1	Schematic in the midsagittal plane shows the three	4
	functional anatomic compartments of the female	
	pelvis and the most important pathologic conditions	
	that may occur in each.	
2	Schematic in the midsagittal plane shows the male	5
	pelvic cavity.	
3	Drawings of a ship illustrate the interactions of the	6
	levator ani and endopelvic fascia.	
4	Normal female pelvic floor anatomy. Axial T2-	8
	weighted MR images show the ligaments that	
	support the female urethra at superior (a) and	
	inferior (b).	
5	Levels of vaginal support.	10
6	Normal female pelvic floor anatomy.	11
7	Endopelvic fascia.	12
8	Normal fascial support.	13
9	Normal level III fascia.	13
10	Schematic in the coronal & axial plane at the level	15
	of the vagina (V) depicts the three levels of pelvic	
	floor support.	
11	Pelvic floor overview.	16
12	Pelvic floor muscles.	17
13	Urogenital hiatus.	18

Figure	Title	Page
14	Schematics show the anatomy of the female pelvic	20
	floor at the level of the pelvic diaphragm.	
15	Schematics show the Muscles of the Perineum.	21
16	Urethral supporting ligaments.	23
17	Urethrovaginal sphincter.	24
18	The ano-rectal angle.	26
19	Drawings illustrate the puborectalis muscle	27
	originating from the pubic symphysis and	
	surrounding anorectal junction during (a) rest, (b)	
	squeezing, and (c) straining.	
20	illustrative case of study cases showing the anal	28
	sphincter anatomy in (a). axial plane and (b). in	
	sagittal plane.	
21	Drawings images show grades of intra-rectal	28
	intussusception: proximal (a, a'), middle (b, b'),	
	and distal or intra-anal (c, c').	
22	A 65-year-old female with urinary incontinence,	53
	rectocele, and defecatory dysfunction.	
23	Intrinsic sphincter deficiency at urodynamics and	54
	a short urethral sphincter at MR imaging in a 55-	
	year-old woman.	
24	Variable anatomic appearances of urethral	55
	diverticula.	<u></u>
25	Urethral supporting system abnormalities.	56

Figure	Title	Page
26	(A) Symmetric Pubococcygeus muscle in a 38-	58
	year-old woman without urinary dysfunction	
	(B)Disrupted pubococcygeus muscle in a 68-year-	
	old woman with urinary incontinence.	
27	Normal fascial support and level I fascial lesion	59
28	A 46-year-old gravida 3 para 2 female with prior	60
	hysterectomy and anterior vaginal wall suspension	
	presenting with posterior bulge and suspected	
	rectocele.	
29	A 61-year-old female with pelvic pressure	61
	symptoms and clinically suspected cystocele and	
	cervical prolapse.	
30	A-F Schematic diagrams and G-I axial T2-	62
	weighted TSE image magnetic resonance images	
	(5000/132) at levels I and II endopelvic fascial	
	support illustrating the structural difference	
	between lateral (paravaginal) and midline	
	(cystocele) defects, and how these are visualized	
	on MRI, differentiating the type and site of each	
	defect.	
31	Coronal T2-weighted image shows mild convex	63
	downward deformity of the iliococcygeal muscle.	
32	Static MRimages in two patients (one 54-year-old	64
	woman [a] and one 33-year-old woman [b, c] with	
	both anal incontinence and POP.	

Figure	Title	Page
33	A 75-year-old female with remote history of	65
	multicompartment pelvic floor repair with	
	recurrent prolapse.	
34	A 70-year-old female with history of constipation.	66
35	Midsagittal T2-weighted single-shot fast SE	70
	relaxed image, obtained in a female patient who	
	had undergone hysterectomy, shows anatomic	
	landmarks used in the HMO classification system.	
36	A 46-year-old female with chronic pelvic pain,	71
	demonstrating multi-compartment prolapse during	
	defecation.	
37	A 54-year-old female with clinically suspected	72
	rectocele.	
38	Pelvic floor relaxation and posterior compartment	73
	measurements. a, b, c Dynamic Balanced Fast	
	Field Echo (BFFE) sequence in the midsagittal	
	plane at rest (a), mild (b), and maximum straining	
	(c) (a) shows how to quantify the pelvic floor	
	laxity.	
39	Urethral hypermobility can be associated with	75
	cystocele.	
40	Severe uterine prolapse in a 41-year-old woman.	77
41	Peritoneocele.	78

Figure	Title	Page
42	Drawings and corresponding sagittal FIESTA	81
	images illustrate degrees of intrarectal	
	intussusception: proximal (a, a'), middle (b, b'),	
	and distal or intraanal (c, c').	
43	Descending pelvic floor syndrome in a 45-year-	83
	old multiparous woman with incomplete	
	defecation after hysterectomy and rectopexy	
44	A 70-year-old female with long history of	84
	constipation.	
45&46	Demographic data of included patients	95
47	Case (1)	106
48	Case (2)	108
49	Case (3)	110
50	Case (4)	112
51	Case (5)	114
52	Case (6)	116
53	Case (7)	117
54	Case (8)	119

Introduction

Pelvic floor failure is a major medical and social problem. It is primarily a problem for multiparous and postmenopausal females. Though it may also affect premenopausal women and men in a smaller proportion.

It can be presented with non specific symptoms, such as urinary and or fecal incontinence or chronic constipation, pelvic pain, and organ prolapse (*Buy and Ghossain*, 2013).

Routine clinical examination and various medical staging systems have been used for the assessment of pelvic floor failure. One of the most accepted clinical staging systems is Pelvic Organ Prolapse Quantification (POP-Q), introduced by the International Continence Society (*Lalwani et al.*, *2013*).

However, they don't involve a direct assessment method of the anatomy, also the occurrence of underestimation of the extent & degree of the dysfunction, misdiagnosis the site of the prolapse (in more than 45% of cases), and is also less useful for surgical planning. There are other functional investigations, like urodynamic studies and dynamic cystoproctography are currently used to evaluate the dynamics of the pelvic floor

MR defecography offers excellent demonstration of the pelvic soft tissues. It is used to evaluate the functionality of the pelvic floor and pelvic organs while defecating, hence it is called dynamic or functional MR imaging. It is important to perform a dynamic study because certain abnormalities are revealed only during defecation; for example, rectal prolapse or intussusception. Also it allows assessment of spastic pelvic floor

syndrome and descending perineum syndrome and visualization of enteroceles without exposing the patient to harmful ionizing radiation (*Colaiacomo et al.*, 2009).

The presence of cine T2 -weighted imaging sequences and high quality surface coils has made MR imaging an excellent competitor for the urodynamic studies, clinical examinations as well as cystoproctography. It doesn't include any of the other known functional MR techniques like DWI and contrast study. A standardized MR imaging protocol is presented that allows for complete imaging of pelvis in less than 15 minutes (*Lalwani et al.*, 2013).

Moreover, it is of great value in women with symptoms of multicompartment involvement for whom a complex repair is planned or who have undergone previous repairs, magnetic resonance (MR) imaging can be a useful preoperative planning tool (*Lalwani et al.*, 2013).

Aim of Work

The present study is aiming to highlight the role of MR defecography in assessment of pelvic floor failure.