

Faculty of Veterinary Medicine Cairo University Department of Microbiology

Study on the antimicrobial activity of some plants

A Thesis Presented By

Doaa Mohamed Moawad El-Tahan

(B.V.Sc. Faculty of Vet. Medicine, Cairo University 2009)

For The Degree of Master in Veterinary Medical Science (Microbiology)

Under Supervision of

Prof. Dr. Heidy Mohamed Shawky Abo El-Yazeed

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Dr. Sherin Ibrahim Ibrahim

Lecturer of pharmacology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Ashraf Mohamed Barakat

Head of Zoonoses Department National Research Centre

Faculty of Veterinary Medicine Cairo University Department of Microbiology

Supervision sheet

Study on the antimicrobial activity of some plants

A Thesis Presented By

Doaa Mohamed Moawad El-Tahan

(B.V.Sc. Faculty of Vet. Medicine, Cairo University 2009)

Under Supervision of

Prof. Dr. Heidy Mohamed Shawky Abo El-Yazeed

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Dr. Sherin Ibrahim Ibrahim

Lecturer of pharmacology Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Ashraf Mohamed Barakat

Head of Zoonoses Department National Research Centre

كلية الطب البيطرى جامعة القاهرة قسم الميكروبيولوجيا

لجنة الإشراف

دراسة عن النشاط المضاد للميكروبات لبعض النباتات رسالة مقدمة من

طب دعاء محمد معوض الطحان

بكالوريوس العلوم الطبية البيطرية-جامعة القاهرة (2009)

تحت إشراف

أ.د. هايدي محمد شوقي أبو اليزيد

أستاذ الميكروبيولوجيا كلية الطب البيطرى - جامعة القاهرة

د. شیرین إبراهیم إبراهیم

مدرس الأدوية كلية الطب البيطري جامعة القاهرة

أ.د. أشرف محمد بركات رئيس قسم الأمراض المشتركة المركز القومي للبحوث Name: Doaa Mohamed Moawad El-Tahan Birth date: 17/1/1987

Nationality: Egyptian

Scientific degree: Master degree (Microbiology)

Title of Thesis: Study on the antimicrobial activity of some plants

Prof. Dr. Heidy Mohamed Shawky Abo El-Yazeed

Professor of Microbiology - Faculty of Veterinary Medicine - Cairo University

Dr. Sherin Ibrahim Ibrahim

Lecturer of pharmacology- Faculty of Veterinary Medicine - Cairo University

Prof. Dr. Ashraf Mohamed Barakat

Head of Zoonoses Department- National Research Centre

ABSTRACT

Many edible plants have been used since ancient time to control microbial infections. This study was designed for evaluating the antibacterial effect of the crude extracts of the tested herbal plants (Citrillus colocynthis fruits and seeds, Cucurbita pepo fruits and seeds, Moringa oleifera leaves) against some bacterial pathogens, namely methicillin resistant Staphylococcus aureus (MRSA), Salmonella Typhi, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Extraction method was applied for previously mentioned plants using methanol 70% then fractionation of these crude extracts was done by solubilization in water. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) of the studied extracts. Also the minimum bactericidal concentration (MBC) was determined by subculturing on antibiotic free nutrient rich agar plates. It was found that, MIC results of Citrullus colocynthis fruits and seeds extract revealed that the butanol and methanol extracts had the highest inhibition effect but hexane extract had the lowest one. Concerning MBC results of Citrullus colocynthis fruits and seeds extract it revealed that the methanol extract had the highest cidal effect but hexane and chloroform extracts had the lowest one. MIC results of *Cucurbita*

١

pepo fruits and seeds extract revealed that the butanol extract had the highest inhibition effect but hexane extract had the lowest one. Concerning MBC results of *Cucurbita pepo* fruits, it revealed that the methanol, hexane and butanol extracts had the highest cidal effect but chloroform extract had the lowest one. While MBC results of *Cucurbita pepo* seeds revealed that the chloroform extract had the highest cidal effect but hexane extract had the lowest one. MIC results of *Moringa oleifera* leaves revealed that the butanol extract had the highest inhibition effect specifically against *Pseudomonas aeruginosa* with MIC 160 μg/ml but hexane extract had the lowest one. Concerning MBC results, it revealed that the methanol and hexane extracts had the highest cidal effect while chloroform and butanol extracts had the lowest one. These results confirm the traditional claims and provide promising baseline information for the potential use of the tested extracts against bacterial infections.

Keywords:

Antibacterial, MRSA, Salmonella Typhi, Pseudomonas aeruginosa, E.coli, Klebsiella pneumoniae, Extract, MIC, MBC, Moringa oleifera, Citrillus colocynthis, Cucurbita pepo.

To

My beloved Mother,

My Father,

My husband Hegazy,

My mother in law

And my brothers

Acknowledgment

I am, and will always be indebted to Allah, the most Gracious and the most Merciful, the bounties of whom I can never reckon.

It is a great pleasure to thank **Prof. Dr. Heidy Abo El-Yazeed**, Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University, for her kind supervision, support, creative and comprehensive advice during the course of this study.

I would like to record my gratitude and my deep thanks to **Dr. Sherin Ibrahim**, lecturer of Pharmacology, Faculty of Veterinary Medicine, Cairo University, for her help and kind advice.

I wish to express my unlimited gratitude to **prof. Dr. Ashraf Barakat,** Professor of zoonoses, National Research Centre, for his useful help and assistance in this work.

I would like to express my gratitude to my track guide, **Dr. Mahmoud El-Hariri**, Assistant Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University, whose expertise, understanding, and patience, added considerably to my graduate experience. His comments and kind help during the course of this work are greatly appreciated.

My gratitude extends, to **Prof. Dr. Abdel Mohsen Hammam**, Professor of Reproductive pharmacology, National Research Centre for his continuous help, support and advice.

I would like to express my special appreciation and thanks to **Prof. Dr. Ahmed El-Sherif**, Professor of Microbiology, Faculty of Pharmacy, Cairo University.

Finally, I would like to thank my dear friends **Heba Hussein** and **Nashwa Moatez** for their kind support and my colleagues **Dr. Ahmed Roshdy** and **Mr. Islam Hosny** for their endless help.

LIST OF CONTENTS:	
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1.Urgent need for new antimicrobial agents	5
2.2.Plants as a source of new antimicrobial compounds	7
2.3. Screening of natural products for drug discovery	12
2.4.Medicinal plants and antimicrobial activity	15
2.5.Examples of some plants used as antimicrobial agents:	16
2.5.1.Citrullus colocynthis	16
2.5.2.Cucurbita pepo	25
2.5.3.Moringa oleifera	34
3. MATERAL AND METHODS	43
3.1.Materials:	43
3.2.Methods:	46
3.2.1. Reagent preparation	46
3.2.2. Collection and preparation of the selected plants	48
3.2.3. Preparation of plant extracts	48
3.2.4. Preparation of stock solution	49
3.2.5. Dilution of active principles	50
3.2.6. Preparation of the bacterial suspension	50
3.2.7. Determination of MIC for the plant extracts	51
3.2.8. Determination of MBC for the plant extracts	52
3.2.9. Statistical analysis	53
4.RESULTS	54
4.1.Plant material and extraction:	54
4.2.Determination of minimum inhibitory concentration (MIC	C) for
the different plant extracts:	54
4.3.Determination of minimum bactericidal concentration (M	BC)
for the different plant extracts:	82
5.DISCUSSION	.106
6.SUMMARY	.118
7.REFERENCES	.121

List of Figures:

Figure (1). Different parts of <i>C. colocynthis</i> fruits and seeds17
Figure (2). Different parts of <i>Cucurbita pepo</i> fruits and seeds26
Figure (3). Moringa oleifera leaves
Figure (4). Minimum inhibitory concentration (MIC) of methanol extract of different plants on the tested microorganisms
Figure (5). Minimum inhibitory concentration (MIC) of hexane extract of different plants on the tested microorganisms
Figure (6). Minimum inhibitory concentration (MIC) of chloroform extract of different plants on the tested microorganisms60
Figure (7). Minimum inhibitory concentration (MIC) of butanol extract of different plants on the tested microorganism62
Figure (8). Effect of different solvents on the inhibition of MRSA growth
Figure (9). Effect of plant extracts on the inhibition of MRSA growth
Figure (10). The combined effect of different solvents and plant extracts on the inhibition of MRSA growth
Figure (11). MIC test of <i>Citrullus colocynthis</i> seeds extract clarifying the inhibitory effect for MRSA
Figure (12). Effect of different solvents on the inhibition of <i>Salmonella</i> Typhi growth
Figure (13). Effect of plant extracts on the inhibition of <i>Salmonella</i> Typhi growth
Figure (14). The combined effect of different solvents and plant extracts on the inhibition of <i>Salmonella</i> Typhi growth69

Figure (15). MIC test of <i>Citrullus colocynthis</i> seeds extract clarifying the inhibitory effect for <i>Salmonella</i> Typhi
Figure (16). Effect of different solvents on the inhibition of <i>Pseudomonas aeruginosa</i> growth71
Figure (17). Effect of plant extracts on the inhibition of <i>Pseudomonas aeruginosa</i> growth
Figure (18). The combined effect of different solvents and plant extracts on the inhibition of <i>Pseudomonas aeruginosa</i> growth72
Figure (19). MIC test of <i>Cucurbita pepo</i> seeds extract clarifying the inhibitory effect for <i>Pseudomonas aeruginosa</i>
Figure (20). MIC test of <i>Moringa</i> leaves extract clarifying the inhibitory effect for <i>Pseudomonas aeruginosa</i>
Figure (21). Effect of different solvents on the inhibition of <i>E.coli</i> growth
Figure (22). Effect of the plant extracts on the inhibition of <i>E.coli</i> growth
Figure (23). The combined effect of different solvents and plant extracts on the inhibition of <i>E.coli</i> growth
Figure (24). MIC test of <i>Cucurbita pepo</i> fruits extract clarifying the inhibitory effect for <i>E.coli</i>
Figure (25). MIC test of <i>Moringa</i> leaves extract clarifying the inhibitory effect for <i>E.coli</i>
Figure (26). Effect of different solvents on the inhibition of <i>Klebsiella pneumoniae</i> growth
Figure (27). Effect of plant extracts on the inhibition of <i>Klebsiella pneumoniae</i> growth

Figure (28). The combined effect of solvent and plant extract on the inhibition of <i>Klebsiella pneumoniae</i> growth
Figure (29). MIC test of <i>Cucurbita pepo</i> seeds extract clarifying the inhibitory effect for <i>Klebsiella pneumoniae</i> 82
Figure (30). Minimum bactericidal concentration (MBC) of the methanol extract of different plants on the tested microorganisms83
Figure (31). Minimum bactericidal concentration (MBC) for the hexane extract of different plants on the tested microorganisms85
Figure (32). Minimum bactericidal concentration (MBC) of the chloroform extract of different plants on the tested microorganisms86
Figure (33). Minimum bactericidal concentration (MBC) of the butanol extract of different plants on the tested microorganisms88
Figure (34). The cidal effect of different solvents on MRSA growth
Figure (35). The cidal effect of plant extracts on MRSA growth91
Figure (36). The combined cidal effect of different solvents and plant extracts on MRSA growth
Figure (37). The cidal effect of different solvents on <i>Salmonella</i> Typhi growth
Figure (38). The cidal effect of plant extracts on <i>Salmonella</i> Typhi growth
Figure (39). The combined cidal effect of different solvents and plant extracts on <i>Salmonella</i> Typhi growth
Figure (40). The cidal effect of different solvents on <i>Pseudomonas</i> aeruginosa growth

Figure (41). The cidal effect of plant extracts on <i>Pseudomonas</i>
aeruginosa growth98
Figure (42). The combined cidal effect of different solvents and plant extracts on <i>Pseudomonas aeruginosa</i> growth98
Figure (43). The cidal effect of different solvents on <i>E.coli</i> growth
Figure (44). The cidal effect of plant extracts on <i>E.coli</i> growth101
Figure (45).The combined cidal effect of different solvents and plant extracts on <i>E.coli</i> growth
Figure (46). MBC test of different plant extracts clarifying the cidal effect for <i>E.coli</i>
Figure (47). The cidal effect of different solvents on <i>Klebsiella pneumoniae</i> growth
Figure (48). The cidal effect of plant extracts on <i>Klebsiella</i> pneumoniae growth
Figure (49). The combined cidal effect of different solvents and plant extracts on <i>Klebsiella pneumoniae</i> growth
Figure (50). MBC test of different plant extracts clarifying the cidal effect for <i>Klebsiella pneumoniae</i>

List of Tables

Table (1). The chemical composition of the dried <i>Cucurbita pepo</i> seeds
Table (2). The yield of different solvents used for extraction of each plant sample
Table (3). The minimum inhibitory concentration (MIC) of the methanol extract
Table (4). The minimum inhibitory concentration (MIC) of the hexane extract
Table (5). The minimum inhibitory concentration (MIC) of the chloroform extract
Table (6). The minimum inhibitory concentration (MIC) of the butanol extract
Table (7). ANOVA test explains the effect of different solvents and different plants on the inhibition of MRSA growth
Table (8). Pair wise comparison for the effect of different solvents on the inhibition of MRSA growth
Table (9). ANOVA test explains the effect of different solvents and different plants on the inhibition of <i>Salmonella</i> Typhi growth67
Table (10). ANOVA test explains the effect of different solvents and different plants on the inhibition of <i>Pseudomonas aeruginosa</i> growth
Table (11). ANOVA test explains the effect of different solvents and different plants on the inhibition of <i>E.coli</i> growth
Table (12). Pair wise comparison for the effect of different solvents on the inhibition of <i>E.coli</i> growth

Table (13). ANOVA test explains the effect of different solvents and different plants on the inhibition of <i>Klebsiella pneumoniae</i> growth.79
Table (14). Pair wise comparison for the effect of different solvents on the inhibition of <i>Klebsiella pneumoniae</i> growth80
Table (15). The minimum bactericidal concentration (MBC) of the methanol extract
Table (16). The minimum bactericidal concentration (MBC) of the hexane extract
Table (17). The minimum bactericidal concentration (MBC) of the chloroform extract
Table (18). The Minimum bactericidal concentration (MBC) of the butanol extract
Table (19). ANOVA test explains the effect of different solvents and different plants on the cidal effect of MRSA growth90
Table (20). ANOVA test explains the effect of different solvents and different plants on the cidal effect of <i>Salmonella</i> Typhi growth93
Table (21). ANOVA test explains the effect of different solvents and different plants on the cidal effect of <i>Pseudomonas aeruginosa</i> growth
Table (22). Pair wise comparison for the cidal effect of plant extracts on <i>Pseudomonas aeruginosa</i>
Table (23). ANOVA test explains the effect of different solvents and different plants on the cidal effect of <i>E.coli</i> growth100
Table (24). ANOVA test explains the effect of different solvents and different plants on the cidal effect of <i>Klebsiella pneumoniae</i> growth

List of Abbreviations

AIDS	Acquired Immune Deficiency Syndrome.
ANOVA	Analysis of variance
ATCC	American Type Culture Collection
CFU	Colony Forming Unit.
DMSO	Dimethyl Sulfoxide.
HIV	Human Immunodeficiency Virus.
MBC	Minimum Bactericidal Concentration.
MDR	Multidrug Resistance.
MFC	Minimum Fungicidal Concentration.
MHA	Mueller-Hinton Agar.
MHB	Mueller-Hinton Broth.
MIC	Minimum Inhibitory Concentration.
mm	Millimeter.
mM	Millimolar.
M.O.	Microorganism
MRSA	Methicillin Resistant Staphylococcus aureus
NOAEL	No Observed Adverse Effect Level.
SDS	Sodium Dodecyl Sulfate.
SM	Secondary Metabolites
WHO	World Health Organization.
	<u>-</u>