

Ain Shams University Faculty of Women for Arts, Science & Education

Synthesis, spectroscopic, characterization and different applications of some schiff base transition metal complexes

A Thesis Submitted to Chemistry Department,
Faculty of Women, Ain Shams University
In partial Fulfillment of the Requirements for
The Degree of M. Sc. in Inorganic and Analytical Chemistry

Presented By

Huda Essam Mousad Amin

(B. Sc. 2013)

Supervised By

Prof. Dr. Omyma Ahmed Moustafa Ali

Professor of Inorganic Chemistry, Faculty of Women, Ain Shams University

Cairo – Egypt.

Prof. Dr. Samir M. H. El-Medani

Professor of Inorganic Chemistry, Faculty of science, El-Faiyum University El-Faiyum – Egypt.

Dr. Abeer s. s. sayed

Lecturer of Inorganic and Analytical Chemistry Faculty of Women, Ain Shams University, Cairo – Egypt.

(2019)

Ain Shams University Faculty of Women for Arts, Science & Education

Synthesis, spectroscopic, characterization and different applications of some schiff base transition metal complexes

THESIS ADVISORS	APPROVED
Prof. Dr. Omyma Ahmed Moustafa Ali Prof. of Inorganic Chemistry, Chemistry department Faculty of Women, Ain Shams University, Cairo – Egypt	
Prof. Dr. Samir Moustafa Hasan El-Medani Prof. of Inorganic Chemistry, Chemistry Department, Faculty of Science, El-Faiyum University, El-Faiyum-Egyp	t.
Dr. Abeer Sayed Salama Sayed	
Lecturer of Inorganic and Analytical Chemistry, Chemistry Faculty of Women, Ain Shams University, Cairo-Egypt.	Department,
	mistry Department ansura Ismail
Approval of Chemistry Department Council	/ /2019
Approval of Faculty Council	1 10010
inprover of faculty countries	/ / 2019

Ain Shams University Faculty of Women for Arts, Science & Education

Qualifications

Student Name : Huda Essam Mousad Amin

Scientific Degree : B. Sc.

Department : Chemistry

Name of Faculty : Faculty of Women

University : Ain Shams University

B. Sc. Graduation Date: 2012/2013

NOTE

Beside the work done in this thesis, the candidate student has attended post-graduate courses for one year in inorganic and analytical chemistry including the following topics:

-	Instrumental Analysis	(CHEM 601)
-	Advanced Coordination Chemistry	(CHEM 631)
-	Radiation Chemistry	(CHEM 632)
-	Writing Scientific Research	(SCR 610)
-	Spectroscopy	(CHEM 630)
-	Ethics of Scientific Research	(SCR 620)
-	Structural Inorganic Chemistry	(CHEM 636)
-	Advanced Reaction Mechanism	(CHEM 634)

She has successfully passed written examinations in the above mentioned topics.

Head of Chemistry Department

Acknowledgement

Praise and thanks be to Allah, I give thanks to God for ability to do Work,

I thank all who in one way or another contributed in the completion of this thesis

I would like to express my deep gratitude to **Prof. Dr. Omyma.A.M. Ali**, Professor of Inorganic Chemistry, College of women, Ain Shams University, for suggesting the research point, her kind help, support, direct supervision and valuable guidance throughout this work.

Also, I would like to express my deep thanks to **Prof. Dr. Samir. M.H. El-Medani,** *Professor of Inorganic Chemistry*, Chemistry Department, Faculty of Science, El Fauom University, for his supervision, useful directions and criticism through the path of research, and I am also thankful for his cooperation in interpreting the results.

My deep gratitude and pride to **Dr. Abeer Sayed Salama Sayed** Lecturer of Inorganic Chemistry, Chemistry Department, Faculty of Women, Ain Shams University, for help, encouragement and cooperation.

Finally, Thanks are also to all members of the chemistry Department, College of women, Ain Shams University, for their kind help, support and friendship.

Huda Lssam Mousad

CONTENTS

CONTENTS

	PAGE
List of Schemes	I
List of Figures	II
List of Tables	VI
List of Abbreviations	IX
Abstract	XI
Summary	XIII
<u>Chapter (1)</u>	
General Introduction	
I.1. Introduction	1
I.2. Applications of Schiff bases and transition	2
metal complexes	
I.3. Schiff base complexes derived from 1,8-	7
diaminonaphthalene and its derivatives	
I.4. Schiff base complexes derived from furfural	17
and its derivatives	
Aim of the work	X
<u>CHAPTER (II)</u>	
<u>EXPERIMENTAL</u>	
II.1. Materials and reagents	32
II.2. Elemental analysis	32
II.3. Spectroscopic investigations	32
II.3.1. Infrared spectra measurements	32
II.3.2. Proton nuclear magnetic resonance spectra	32

II.3.3. Mass spectra	33
II.3.4. Electronic absorption spectra	33
II.3.5. Thermogravimetric analyses	33
II.3.6. Photoluminescent properties	33
II.3.7. Magnetic measurements	33
II.3.8. Conductance measurements	34
II.3.9. Powder X-ray diffraction analysis	35
II.3.10. Scanning electron microscopy	35
II.4. Synthesis of 8-((furan-2-	35
ylmethylene)amino)naphthalene-1-amine	
James James James Landing	26
	36
	36
II.5. Synthesis of the complexes	
II.5. Synthesis of the complexes II.6. Density functional theory method	36
II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the	36
II.5. Synthesis of the complexesII.6. Density functional theory methodII.7. Evaluation of the catalytic activity of the metal complexes	36
 II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation 	36 37 38
 II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation II.8.1. In vitro antimicrobial activity 	36 37 38 38
 II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation II.8.1. In vitro antimicrobial activity II.8.2. MIC Determination 	36 37 38 38 40
 II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation II.8.1. In vitro antimicrobial activity II.8.2. MIC Determination II.8.3. Cytotoxicity evaluation using viability assay 	36 37 38 38 40
II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation II.8.1. In vitro antimicrobial activity II.8.2. MIC Determination II.8.3. Cytotoxicity evaluation using viability assay CHAPTER (III)	36 37 38 38 40
II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation II.8.1. In vitro antimicrobial activity II.8.2. MIC Determination II.8.3. Cytotoxicity evaluation using viability assay CHAPTER (III) RESULTS AND DISCUSSION	36 37 38 38 40 41
II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation II.8.1. In vitro antimicrobial activity II.8.2. MIC Determination II.8.3. Cytotoxicity evaluation using viability assay CHAPTER (III) RESULTS AND DISCUSSION III.1. Spectroscopic study of the ligand	36 37 38 38 40 41
II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation II.8.1. In vitro antimicrobial activity II.8.2. MIC Determination II.8.3. Cytotoxicity evaluation using viability assay CHAPTER (III) RESULTS AND DISCUSSION III.1. Spectroscopic study of the ligand III.2. Spectroscopic studies of the complexes	36 37 38 38 40 41 46 57
II.5. Synthesis of the complexes II.6. Density functional theory method II.7. Evaluation of the catalytic activity of the metal complexes II.8. Pharmacological evaluation II.8.1. In vitro antimicrobial activity II.8.2. MIC Determination II.8.3. Cytotoxicity evaluation using viability assay CHAPTER (III) RESULTS AND DISCUSSION III.1. Spectroscopic study of the ligand III.2. Spectroscopic studies of the complexes III.2.1. Mass spectral studies	36 37 38 38 40 41 46 57 57

III.2.5. Electronic spectra and magnetic studies	60
III.2.6. Fluorescence spectra studies	62
III.2.7. Thermogravimetric analysis	63
III.2.8. Thermodynamic activation parameters	67
III.2.9. Powder X-ray diffraction analysis	68
III.2.10. Scanning electron microscopy study	70
III.3. DFT studies	70
III.3.1. Geometry optimization	70
III.3.2. Frontier molecular orbital analysis	71
III.4. Catalytic activity of the metal complexes	117
III.4.1. Effect of time and temperature on methyl	117
orange degradation	
III.4.2. Kinetic study	118
III.4.3. Mechanism	119
III.5. Pharmacological evaluation	130
III.5.1. In vitro antimicrobial activity	130
III.5.2. MIC Determination	131
III.5.3. Cytotoxicity studies	132
References	139