STUDY OF THE GENETIC DIVERSITY AND PRODUCTIVE PERFORMANCE FOR SOME DUCK LOCAL STRAINS USING MOLECULAR GENETICS

By

HESHAM AHMED HUSSIEN HUSSIEN MADIAN

B. Sc. Agric. Sci.(Poult. Prod.), Fac. of Agric., Ain Shams University, 2008 M. Sc. Agric. Sci. (Poult. Breeding), Fac. of Agric., Ain Shams Univ., 2012

A Thesis Submitted in Partial Fulfillment
Of
The Requirements of the Degree of

in
Agricultural Sciences
(Poultry Breeding)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

STUDY OF THE GENETIC DIVERSITY AND PRODUCTIVE PERFORMANCE FOR SOME DUCK LOCAL STRAINS USING MOLECULAR GENETICS

By

HESHAM AHMED HUSSIEN HUSSIEN MADIAN

B.Sc. Agric. Sci. (Poult. Prod.), Fac. of Agric., Ain Shams University, 2008 M.Sc. Agric. Sci. (Poult. Breeding.), Fac. of Agric., Ain Shams Univ., 2012

This thesis for degree of Ph.D. has been approved by: Dr. Kamal Elden Mostafa Saleh Professor Emeritus of Poultry breeding, Faculty of Agriculture, Kefir Elshekh University Dr. Hassan Elsayed Ayoup Professor Emeritus of Poultry breeding, Faculty of Agriculture, Ain Shams University. Dr. Mahmoud Yousef Mahrous Associate Professor of Poultry breeding, Faculty of Agriculture, Ain Shams University. Dr. Ali Zein El-Deen Hassan Farag Emirates Professor of Poultry breeding, Faculty of Agriculture, Ain Shams University.

STUDY OF THE GENETIC DIVERSITY AND PRODUCTIVE PERFORMANCE FOR SOME DUCK LOCAL STRAINS USING MOLECULAR GENETICS

By

HESHAM AHMED HUSSIEN HUSSIEN MADIAN

B.Sc. Agric. Sci. (Poult. Prod.), Fac. of Agric., Ain Shams University, 2008 M.Sc. Agric. Sci. (Poult. Breeding), Fac. of Agric., Ain Shams Univ., 2012

Under the supervision of:

Dr. Ali Zein El-Deen Hassan Farag

Professor Emeritus of Poultry breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Mahmoud Yousef Mahrous

Associate Professor of Poultry breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

Dr. Yasser Kamel Badawy

Head Researches of Biotechnology, Department of Biotechnology, Animal Research Institute, Agriculture Research Center

ABSTRACT

Hesham Ahmed Hussein Hussein Madian: Study of the Genetic Diversity and Production Performance for Some Duck Local Strains Using Molecular Genetics. Unpublished Ph.D. Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2019.

This study aimed to evaluate the Genetic Diversity and productive performance for two native Duck strains (Sudani, SUD and Domyati, DOM) using Microsatellite genotyping analysis. This investigation was done throughout three main parts. The 1st part, deals with the base breeding flock which consist of 600 ducks from both strains and aged 10 months. Some productive traits were determined: Body weight, Body measurements: Shank length, Keel length and body circumstance, fertility and hatchability and external and internal egg quality measurements. In the 2nd part, the present study performed using 50 day old duck chicks from each strain. The comparison was held between these strains for different productive traits: Body weight, Body measurements, Mortality rate, feed consumption, feed conversion, carcass measurements and weight of some lymphoid organs and some blood constituents were determined. The 3rd part Molecular genetics technique was carried out to study the Molecular genetic diversity for both strains by isolating the DNA from random twelve venous blood samples (6 samples of each strain) and protein analysis.

The obtained results could be summarized as follow:

- Body weight of SUD strain was heavier than those of DOM ones at all studied ages. Also body weight of Males exceeded that of females within each strain.
- Body measurements did not differ significantly between the two strains.

- Egg External qualities (namely Egg weight, Shell weight, egg Shell, shape index and Shell thickness) the higher significant recorded values for SUD strain than DOM ones. As for the Internal egg quality measurements (namely Yolk weight, Albumen weight, Yolk %, Albumen %, Yolk index, Yolk color and Haugh units) were Significantly higher for DOM strain compared to SUD ones
- Fertility and hatchability percentages were higher in DOM strain ducks than SUD ones.
- Mortality rate didn't affect by strains
- Feed Consumption and Food Conversion: The SUD strain consumed more feed than DOM strain while the feed conversion influence by strain.
- Carcass traits (namely Carcass %, heart %, abdominal fat %, spleen % and Thymes %) were significant higher in SUD strain than that of DOM ones. As for Gizzard % and pancreas% they were significantly higher in DOM strain than SUD ones. There were no significant differences between the two strains in liver %.
- In blood constituents there were no significant differences between the two strains in determing: calcium albumin cholesterol and HDL unit. It's noticed that The DOM strain recorded significantly higher values in phosphorus globulin total fat and total protein than the SUD strain. Also (LDL) was significantly higher in SUD ducks than DOM ones.
- Genetic studies: The results appeared that the PIC (polymorphic information content) of most microsatellite sites was lower than 0.5. This means that the selected microsatellite loci had a low diversity and can reflect the genetic relationship among SUD and DOM populations. This assured that both SUD and DOM populations could be considered as near populations on a molecular level. When compare protein fraction between DOM and SUD strains shown that common fraction with 75 KDa. The

last results reflected the differ protein fraction between DOM and SUD strains.

Key words: Ducks Performance, Carcass Characteristics, Egg traits, Blood Constituents, Genetic Diversity, Protein and Microsatellite Analysis.

ACKNOWLEDGEMENT

First of all, I wish to express my prayerful thanks to **ALLAH** for everything.

I would like to express my deepest thanks to Professor **Dr. A. Zein El-Dein** Professor Emeritus of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, valuable advice, revising the manuscript and continues supporting during study.

I deeply grateful and greatly indebted to **Dr. M. Mahrous**, Assistant Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, encouragement and revising the manuscript.

My deepest gratitude and sincere thanks are extended to **Dr. L. M. RADWAN**, Assistant Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision and for his valuable advice and help.

My deep thanks to **Dr. Y. BADAWY**, and **Dr. S. Shaaban** Prof. of biotechnology, Animal Production Research Institute, Agricultural Research Center, for THEIR supervision, stimulating, ideas, excellent guidance, close supervision, assistance, continuous encouragement,., kind help in preparation and execution of this thesis and careful revision of manuscript.

Many thanks are also extended to all staff members of Poultry Production Department, Faculty of Agriculture, Ain Shams University,

Thanks to my colleagues, staff members of biotechnology Department, Animal Production Research institute, Agricultural Research Center, for their KIND help and assistance. My deep thanks and gratitude to my family, especially my Father, Mother, Family sister, wife and my daughter's Maryam, for encouragement, kind helps during this work.

CONTENTS

	Page
LIST OF TABLE	
LIST OF FIGURES	
LIST OF ABBEVRATION	
ACKNOWLEDGMENT	
ABSTRACT	
INTRODUCTION	
REVIEW OF LITERATURE	3
Body weight and weight gain	3
Body measurements	5
External and Internal Egg Quality measurements	6
3.1. External egg quality measurements	8
3.1.1. Egg weight	8
3.1.2. Shape Index	8
3.1.3. Egg shell traits	9
3.2. Internal Egg quality measurements	11
3.2.1. Yolk traits	11
3.2.2. Albumen traits	12
3.2.3. Haugh Unite	12
4. Fertility and Hatchability	13
5. Mortality Rate	15
6. Feed Consumption and Feed Conversion	15
6.1. Feed Consumption	15
6.2. Feed Conversion	18
7. Carcass traits	20
7.1. Carcass, Giblets and Abdominal fat	20
7.2. Lymphoid Organs	24
8. Blood constituents	25
8.1. Serum protein Fractions	25
8.3. Cholesterol	26

	Page
8.4. Calcium and Phosphorus	27
9. Genetic studies:	28
9.1. SDS-PAGE analysis	28
9.2 Microsatellite analysis	30
Material and methods	39
The first part	39
The second part	39
The third part	39
Protein analysis	42
Microsatellite	45
Statistical analysis	48
RESULTSANDDISCUSSION	
1. Body Weight	50
1.1. Adult live body weight (10 months age)	50
1.2. Body weight in the early stages of growth (from hatching up to	51
12 weeks)	
1.3. Body weight gain in the early stages of growth (from hatching	53
up to 12 weeks)	
2.Body Measurements	53
2.1.body measurements of ducks at later age(at10 months)	53
2.1.1 shank length	53
2.1.2 keel length	53
2.1.3 Breast circumferences	54
2.2. Body measurements of duck during early periods of	55
growth(aged 4, 8 and 12 weeks)	
2.2.1 shank length	55
2.2.2 keel length	55
2.2.3.Breast circumferences	55
3. External and internal quality qualities of eggs	57
3.1. External qualities	57
3.1.1. Egg weight (g)	57

	Page
3.1.2. Shell weight (g)	57
3.1.3. Percentage of shell (%)	57
3.1.4. Egg shape index	57
3.1.5. Shell thickness	58
3.2. Internal egg qualities	58
3.2.1. Yolk Weight (g)	58
3.2.2. Albumen Weight (g)	59
3.2.3. Percentage of yolk and albumen (%)	59
3.2.4. Yolk index	59
3.2.5 Yolk color	59
3.2.6. Haugh unit	59
4. Fertility and hatchability percentage	60
5. Mortality rate	61
6. Food Consumption and Food Conversion	62
6. 1. Feed consumption	62
6. 2. Feed conversion	62
7. Carcass trait	63
7.1. Carcass, Giblets and Abdominal fat	63
7.1. 1.Carcass Percentage	63
7.1.2. Giblets Percentage	64
7.1.2.1. Heart Percentage	64
7.1. 2.2. Liver Percentage	64
7.1. 2.3. Gizzard Percentage	64
7.1. 3. Abdominal fat Percentage	65
7.2. Lymphoid Organs	66
7.2.1. Pancreas Percentage	66
7.2.2. Spleen Percentage	66
7.2.3. Thymes Percentage	66
8. Blood constituents	67
9. Genetic studies	68
9.1. Protein analysis	68

	Page
9.2. Microsatellite	69
SUMMARY AND CONCLUSION	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

Гable No:		Page
1	Previous results obtained about body weight trait	4
	and Body weight gain	
2	previous results obtained about body measurements	5
	of duck during early periods of growth	
3	previous results of body measurements of ducks	6
	obtained of later ages	
4	Average of egg weight trait as mentioned formally	8
	by many investigators	
5	Previous results obtained about shape index of	9
	ducks egg	
6	the previous obtained results about egg – shell traits	10
7	Listed some previous results obtained about yolk	11
	traits by numerous investigators	
8	Previous results obtained by many investigators	12
	about Albumen traits	
9	Ducks H.U. at different ages	13
10	Fertility and Hatchability percentage use previously	14
	mentioned by many authors	
11	previous results obtained about mortality rate	15
12	previous results obtained about feed consumption	16
	traits	
13	the previous obtained results about feed conversion	18
	trait	
14	previous results obtained formally about different	22
	carcass traits: carcass wt. and %, Giblets wt. and %	
	and abdominal	
15	Previous results obtained formally about different	24
	Lymphoid Organ: Pancreas, Spleen and Thymes	
16	Serum protein fraction results	25
17	Some obtained results about total lipids	26

Table No:		Page
18	Former results about cholesterol level	27
19	Former results about serum Calcium and	28
	Phosphorus	
20	Composition of the rations	40
21	The methods which used in evaluating different	42
	blood constituents were as follows	
22	Illustrate Inter-Simple Sequence Repeat	47
	(ISSR)primers features	
23	Means ±SE of body weight at 10 mo. of age for	50
	SUD and DOM duck strains	
24	Means \pm SE of body weight at different age. for	51
	SUD and DOM duck strains	
25	Means \pm SE of body weight gain at different age.	52
	for SUD and DOM duck strains.	
26	Means \pm SE of body measurements at 10 months	54
	age for SUD and DOM duck strains	
27	Means \pm SE of body measurements at different age	56
	during early periods of growth (4, 8 and 12 weeks)	
	for SUD and DOM duck strains	
28	Means \pm SE of External egg quality measurements	58
	at 10 Months age for SUD and DOM duck strains	
29	Means \pm SE of Internal egg quality measurements at	60
	10 months age for SUD and DOM duck strains	
30	Means \pm SE of Fertility and hatchability percentage	61
	at 10 Months age for SUD and DOM duck strains	
31	Means \pm SE of Mortality rate at different age for	61
	SUD and DOM duck strains	
32	Means \pm SE of Feed consumption at different age	62
	for SUD and DOM duck strains	
33	Means \pm SE of Feed conversion at different age for	63
	SUD and DOM duck strains	

VII

Table No:		Page
34	Means ± SE of Carcass, Giblets and Abdominal fat	65
	at marketing age (12 wk.) of SUD and DOM duck	
	strains	
35	Means ± SE of Lymphoid Organs at marketing age	67
	(12 wk.) of SUD and DOM duck strains	
36	Means \pm SE of Blood constituents for SUD and	68
	DOM duck strains	
37	Showed (PIC), (He), (HO) and (Na) of SUD and	70
	DOM strains duck.	