Clinical and Histological Evaluation of The Healing of Meshed Skin Grafts of Different Meshing Sizes Covered by Fresh Amniotic Membrane Dressings

Protocol of thesis submitted in partial fulfillment of MD degree in plastic, burn and maxillofacial surgery

By

Mohamed Sabry Hassan

Assistant lecturer of plastic and reconstructive surgery, Faculty of Medicine, Minia University

Supervisors

Prof.Dr. Ahmed Fathy Elshahat

Prof. of plastic and reconstructive surgery, Faculty of Medicine, Ain Shams University

Prof. Dr. Abdou Mohamed AbdAllah Darwish

Prof and head. of plastic and reconstructive surgery departement, Faculty of Medicine, Minia University

Prof. Dr. Heba Mohamed Tawfik

Prof and head. of pathology department
Faculty of Medicine, Minia University

Dr. Ahmed Elsherief

Assistant Prof. of plastic and reconstructive surgery Faculty of Medicine, Ain Shams University

Dr. Adel Hussein Amr

Assistant Prof. of plastic and reconstructive surgery, Faculty of Medicine, Ain Shams University

التقييم الاكلينيكي والهيستولوجي لالتئام الرقع الجلديه الشبكيه مختلفه المسافات لثقوبها بعد تغطيتها بالغشاء الامنيوسي الطازج

خطة بحث مقدمة لكلية الطب جامعة عين شمس استيفاءً جزئيًا للحصول على درجة الدكتوراه في جراحة التجميل والحروق والوجه والفكين مقدمة من

الطبيب/ محمد صبري حسن

مدرس مساعد جراحة التجميل والاصلاح كلية الطب - جامعة المنيا

لجنة الاشراف

أ.د. أحمد فتحي الشحات

استاذ جراحة التجميل والاصلاح - كلية الطب - جامعة عين شمس

أ.د. عبده محمد عبدالله درويش

استاذ ورئيس قسم جراحة التجميل الاصلاح - كلية الطب - جامعة المنيا

أ.د.هبه محمد توفيق

استاذ ورئيس قسم الباثولوجي - كلية الطب - جامعة المنيا

د. أحمد الشريف

استاذ مساعد جراحة التجميل والاصلاح - كلية الطب - جامعة عين شمس

د.عادل حسين عمرو

استاذ مساعد جراحة التجميل والاصلاح - كلية الطب - جامعة عين شمس

Acknowledgment

All thanks first and last to **ALLAH**, as we owe him for his great care, support and guidance in every step in our life. Thanks to **ALLAH** for blessing this thesis until it has reached to its end.

I would like to express my sincere gratitude to **Prof. Ahmed Fathy Elshahat**, **Prof. of plastic and reconstructive surgery**, **Faculty of Medicine**, **Ain Shams University**, for his valuable supervision, continuous guidance, encouragement and his extreme effort in revising this work.

My endless thanks to **Prof. Abdou Mohammed Abd Allah Darwish, Prof and Head of Plastic and Reconstructive Surgery Department, Minia University,** for his precious supervision, cooperation, assistance and continuous support. His share of support has been extended to enlighten me further in this work.

My deepest gratitude to **Prof**, **Heba Mohamed Taufik**, **Prof** and head. of **pathology department Faculty of Medicine**, **Minia University** for her kind, ever available and valuable advice, untiring supervision and assistance that helped me greatly to surpass my difficulties.

I wish to express my thanks to Dr. Ahmed Elsherief and Dr. Adel Hussein Amr, Assistant Professors of plastic and reconstructive surgery Faculty of Medicine, Ain Shams University for their valuable guidance, encouragement, training and great scientific information and time afforded by them.

I would like to mention my sincere gratitude to the late **Dr. Mustafa Abdel-Fattah El-Sherif**, **Lecturer of vascular surgery**, **Faculty of Medicine**, **Mina University**, for what he had presented to me in life and work, especially this research which we are going to discuss, God bless his soul.

Then, I would like to show my gratitude towards all patients who participated in this thesis.

Last but not least, I would like to thank all my colleagues in plastic and reconstructive surgery department especially **AbdALLAH Mahmoud AbdALLAH and Amr Khairy Abd Elhakim the Assistant Lecturers of plastic and reconstructive surgery, Faculty of Medicine, Minia University,** for their help in performing surgeries, gathering of data and photo editing. Also I would thank my colleagues in obstetric department and pathology department, Minia University for making it possible for me to perform this work.

Special thanks to my dear wife and kids for their patience and love that make everything possible

Mahamed Sabry 2019

List of Contents

List Of Tables	
List of Figures	
List of Abbreviations	
Introduction	1
Aim of the work	4
Review of literature	5
Skin graft: Historical background	5
Knives and dermatomes	11
Split thickness skin graft	24
Histology of amniotic membrane	37
Amniotic membrane and burns	42
Preservation of amniotic membrane	60
Patient and Methods	80
Results	89
Discussion	126
Summary	137
Conclusion	
References	
Arabic summary	

List of Tables

No	Table	Page
1.	Summary of the historical evolution of skin graft knives and dermatomes	23
2.	Definition of origin of the skin graft	24
3.	Indications of skin grafts	25
4.	Contraindications of skin grafts	25
5.	Indications, advantages, and disadvantages of thin STSG, thick STSG, and FTSG	26
6.	Stages of graft take	30
7.	Causes of Split-Thickness Skin Graft Failure	36
8.	The biological functions and benefits of amniotic membrane as an ideal burn-dressing material	44
9.	A summary of the most popular preservation procedures of AM	72,73,74
10.	Descriptive statistics of demographic data	89
11.	The results of the time of macroscopic healing.	90
12.	Results of OSAS	91
13.	Results of PSAS	93
14.	The results of granulation tissue among groups.	94
15.	The results of oedema among groups.	94,95
16.	The results of inflammatory cells among groups.	96
17.	The results of collagen among groups.	97
18.	The results of epithelialization among groups.	97
19.	The results of blood vessels among groups.	98

list of Figures

No	Title	Page
1.	Reverdin "pinch graft" siccors	9&11
2.	a A diagram of the skin mesher. b The simple original instrument was conceived by the Otto Lanz c Several versions, with and without 'carriers'	10
3.	Catlin amputating knife for cutting Ollier- Thiersch grafts.	12
4.	Thiersch's skin grafting knife	12
5.	Rehn's knife	12
6.	Blair's skin grafting knife	13
7.	Hoffman's knife	13
8.	Finochietto knife	13
9.	Humby's rigid rectangular framework	14
10.	Modified graft cutting razor" described by Humby	15
11.	Bodenham's skin grafting knife 15	
12.	Braithwaite's skin grafting knife 16	
13.	Watson's skin grafting knife	17
14.	Cobbet's modification of braithwaite design	17
15.	Comparison of major modifications of free hand knives	18
16.	Silver's knife	18
17.	Padgett dermatome	20
18.	Reese dermatome	21

19.	The brown dermatome	21
20.	The Castroviejo dermatome 22	
21.	Available motorized dermatomes, from left to right: electric Brown dermatome, air Zimmer dermatome, Padgett dermatome	23
22.	Skin graft thickness	27
23.	Available donor sites for skin grafts	33
24.	Tieover dressing	34
25.	Human amnion and chorion A diagram of a section through amnion and chorion 37	
26.	General appearance of the fetal membranes	37
27.	Structure of the human amniotic membrane stained with hematoxylin and eosin	38
28.	Schematic presentation of the structure of the foetal membrane at term.	41
29.	A picture of John Staige Davis	42
30.	The dried, irradiated amnion sheet is packed in a transparent plastic bag	49
31.	(Zimmer® Electric Dermatome), (Zimmer® Skin Graft Mesher) Meshgraft TM II System and Dermacarriers TM II Skin Graft Carriers.	81
32.	Patient Scar Assessment Scale PSAS	86
33.	Observer Scar Assessment scale OSAS	87
34.	Showing the result of the time of macroscopic among groups.	90
35.	Case1 group1	102

36.	Case2 group 1	103
37.	Case 3 group 1	104
38.	Case4 group 1	105
39.	Case 5 group 1	106
40.	Case 6 group 2	107
41.	Case 7 group 2	109
42.	Case 8 group 2	110
43.	Case 9 group 3	111&112
44.	Case 10 group 3	113,114,115
45.	Case 11 group 3	116
46.	Case 12 group 3	118
47.	Histological examination ,case 1,group 1	119
48.	Histological examination ,case 2,group 1	120
49.	Histological examination ,case 3,group 1	121
50.	Histological examination ,case 1,group 2	122
51.	Histological examination ,case 2,group 2	123
52.	Histological examination ,case 3,group 2	124
53.	Histological examination ,case 1,group 3	125
54.	Histological examination ,case 2,group 3	126
55.	Histological examination ,case 3,group 3	127

List Of Abbreviations

AM	Amniotic membrane
Н&Е	Hematoxylin and eosin
STSG	Split thickness skin graft
FTSG	Full thickness skin graft
SSEA-3 and -4	Stage specific embryonic antigen 3 and 4
Oct-4	Octamer-binding transcription factor 4
HIV	Human immuno-deficiency virus
KGy	Kilogray
HLA	Human leukocyte antigen
α-SMA	Alpha smooth muscle actin
EGF	Epidermal growth factor
Bfgf	Basic fibroblast growth factor
KGF	keratinocyte growth factor
TFG	Transforming growth factor
NGF	Nerve growth factor
PDEF	Pigment derived epithelium factor
TNF	Tumor necrosis factor
IL	Interleukin
HGF	Hepatocyte growth factor
MEM	Minimum Essential Medium
DMEM	Dulbecco's Modified Eagle's medium
DMSO	Dimethyl sulphoxide
PBS	Phosphate buffered saline
RPMI	Roswell Park Memorial Institute
EDTA	Ethylene diamine tetraacetic acid

PDGF	Platelet-derived growth
VEGF	Vascular endothelial growth factor
EGFR	Epidermal growth factor receptor
POSAS	Patient and observer scar assessment scale
OSAS	Observer scar assessment scale
PSAS	Patient scar assessment scale
TBSA	Total body surface area
E&G.	Excision and grafting
REC	Research ethics committee

Introduction

Skin grafts can be used either as sheet grafts or as fenestrated grafts by passing them through a mesher, a mechanical meshing device. Sheet grafts are traditionally seen as milestone for resurfacing post burn raw areas of up to 20% total burnt surface area (TBSA) as they avoid the potentially poor cosmoses of the fenestrated graft. (Archer et al, 1998 and Nikkhah et al, 2014)

Meshed split thickness skin autograft, especially when needed to be widely expanded, don't obtain immediate biological coverage. In cases of patients with burned large total body surface areas, this leaves patients at risk of exposure to multiple metabolic problems and life threatening infections. In a trial to control these risks in the open skin autografts interstices, a sandwich technique with an allograft overlay has been introduced. (Alexander et al, 1981) (Smith et al, 2000)

Meshed skin grafts interstices (gaps) heal by the process of epithelization. This consists of 3 cellular functions; keratinocyte proliferation, migration and differentiation. (**Robnson.**, **1996**)

Each gap on the meshed graft could be considered an individual wound and has to heal by secondary intention. Therefore, the wider is the mesh the more it is liable to heal by secondary intention and scarring. (Nikkhah et al, 2015)

The interstices of the widely expanded meshed skin grafts suffers from infection during the healing process and the formation and persistence of granulation tissue results in delayed healing, and consequent severe wound contraction(*Chu et al*, 2000)

Human amniotic membrane (HAM) consists the inner layer of the fetal membranes (the outer layer being formed by the chorion) and has been reported as a valuable biomaterial in reconstructive surgery and wound-healing researches since its initial description as a transplantable material by J Davis in 1910 (Parolini et al., 2009)

Amniotic membrane (AM) with its natural tissue planes, antiinflammatory and antibacterial properties make it a natural choice for potential wound management, which was confirmed with the application of natural membrane in various clinical situations. (John, 2003 and Sheikh et al, 2014)

The most important features of fresh amniotic membrane(AM) can be divided to 4 categories: rapid adherence to the wound bed, increased angiogenesis, inhibition of protease activity and PMN infiltration and rapid reepithelialization and promotion of wound healing (Mohammadi .,2011)

AM, in burn management, has the efficiency of decreasing the bacterial counts in wound bed. It also has ability to decrease loss of protein, electrolytes and fluids, reducing pain, accelerating wound healing and subsequently reducing scar tissue formation. (Niknejad et al, 2008, Halim et al, 2010 and Sheikh et al, 2014)

In developing countries that consume a lot of medical resources, it is important to find a suitable material for the dressing of burns which improves healing and is readily available, easily applicable and cost-effective. It should also be protective against infection and desiccation. These purposes were served by amniotic membranes. (Mohammadi et al, 2015)

The disadvantage of the use of amniotic membrane is that there is some risk of viral infection transmission (Anatassov et al., 1994). This has been overcome by collection of placentae from screened donors.

No previous in vivo studies have determined the rate of epithelization and healing in meshed grafts covered by fresh amniotic membranes, neither examined the healed gaps of the meshed grafts histologically.

Aim of the work

The aim of this study is to determine the rate of in vivo healing of the meshed skin autograft with different meshing sizes applied to post burn raw areas when covered by fresh amniotic membranes. Histological examination will determine the features of the tissues that filled the gaps (interstices) of meshed skin autografts.