

Unilateral versus bilateral Pedicle Screw Fixation associated with interbody fusion in degenerative Lumbar spine diseases

Thesis

Submitted for partial fulfillment of M.D. Degree in Neurosurgery

By

Mostafa Khalil Ghobashi Khalil

M.B., B.Ch. MSc Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Essam Eldein Abdel Rahman Emara

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Assist Prof. Dr. Sherif Hashem Morad

Assistant Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Dr. Ahmed Roshdy Farghaly

Lecturer of Neurosurgery Faculty of Medicine, Ain Shams University

Dr. Omar El Farouk Ahmed

Lecturer of Neurosurgery Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

I wish to express my deepest thanks and respect for **Prof. Dr. Essam Eldein Abdel Rahman Emara,** Professor of Neurosurgery,
Faculty of Medicine, Ain Shams University, for his valuable supervision, guidance and kind advices throughout this work. I really have the honor to complete this work under his supervision.

I'm very grateful to **Assist Prof. Dr. Sherif Hashem Morad,** Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, who saved all efforts in guiding, helping and supporting me. I greatly appreciate his help and guidance.

Great thanks to **Dr. Ahmed Roshdy Farghaly,** Lecturer of Neurosurgery, Faculty of Medicine, Ain Shams University, for his cooperation and fruitful guidance throughout the whole work.

I would like also to thank with all appreciation **Dr. Omar El Farouk Ahmed**, Lecturer of Neurosurgery, Faculty of Medicine, Ain Shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, I can't forget to thank with all appreciation all members of my **Family**, specially my **parents** and my **Wife** for their support and encouragement in every step of my life.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
List of Cases	X
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomy	4
Pathophysiology	22
Techniques of Lumbar Spine Fusion	34
Unilateral Transforaminal Lumbar Interbody F	usion 45
Lumbar Interbody Fusion biomechanics	58
Patients & Methods	64
Results	83
Case Presentation	107
Discussion	125
Study Limitations	145
Summary	146
Conclusion	148
References	149
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ALIF : Anterior lumbar interbody fusion

ASD : Adjacent segment disease

BAK : Bagby and Kuslich

BPSF: Bilateral pedicular screw fixation

CT : Computed tomography

DBM : Demineralized bone matrix

DS : Degenerative Spondylolisthesis

ECM : Extracellular matrix

MRI : Magnetic resonance imaging

NASS : North American Spine Society

OA : Osteoarthritis

ODI : Oswestry disability index

PEEK: Polythertherketone

PLIF : Posterior lumbar interbody fusion

SD : Standard deviation

SPSS : Statistical Package for Social Science

TLIF: Transforaminal posterior lumbar interbody fusion

UPSF : Unilateral pedicular screw fixation

VAS : Visual Analog Scale

VSP : Variable screw system

List of Tables

Table No	Title	Page	No.
Table (1): Table (2):	Ligaments of the Lumbar Spine Putative sources of specific back pair		
Table (3):	Comparison between unilateral grobilateral group regarding demograph of the studied patients	up and ic data	
Table (4):	Comparison between unilateral grobilateral group regarding intra-op data and hospital length of stay	erative	86
Table (5):	Comparison between unilateral group bilateral group regarding The Visual Scale for back Pain	Ånalog	89
Table (6):	Comparison between unilateral group bilateral group regarding The Visual Scale for leg Pain	Ånalog	92
Table (7):	Comparison between unilateral grobilateral group regarding The Ost disability index ODI	swestry	95
Table (8):	Comparison between unilateral grobilateral group regarding Surgical sedisc height (DH) increasing postoperations.	egment	98
Table (9):	Comparison between unilateral grobilateral group regarding Cranial. A segment DH reduction in (1-6-12 mpostoperative	djacent nonths)	99
Table (10):	Comparison between unilateral grobilateral group regarding Caudal A segment DH reduction in (1-6-12 n postoperative	up and djacent nonths)	
Table (11):	Comparison between unilateral grobilateral group regarding Fusion graand 12 months postoperatively	up and de at 6	

List	of	Tables

Table (12):	Comparis	on betw	een unilate	ral group and	
	bilateral	group	regarding	postoperative	
	complicat	ions			105

List of Figures

Figure No	. Title	Page No.
Figure (1):	Graphic rendering of oblique dorse of L5 vertebra showing the parts vertebral arch	of the
Figure (2):	The intervertebral disc is a pivotal the spinal column, and its pro influence behavior of adjacent tissu	perties
Figure (3):	Photograph of dissected third l	
Figure (4):	Schematic representation showing aspects of the relational anatomy disc	of the
Figure (5):	Graphic rendering of distribution major variations of sacroilion system of arteries that supply vertebrae and their associated struinferior to the fourth lumbar vertebrae.	umbar y the actures
Figure (6):	Ligaments of the lumbar spine	16
Figure (7):	Longissimus thoracis (medial divi erector spinae) schematic of (A) l and (B) thoracic regions and ilioc lumborum (lateral division of spinae) schematic of (C) lumbar a thoracic regions	umbar costalis erector nd (D)
Figure (8):	Schematic arrangement of mul	ltifidus
	muscle in (A) cross-section ar longitudinal section	
	- 0	

Transverse sections of lumbar discs and apophyseal joints showing decrease in nucleus hydration, loss of demarcation between anulus and nucleus with age, and appearance of circumferential fissures by the 3rd decade	23
Radiograph of old cadaveric lumbar spine (anterior on left)	
Current concept of discogenic facet joint pain	32
Surgical technique of posterolateral fusion Careful preparation of the fusion bed is important	38
Surgical technique of posterior lumbar interbody fusion	41
Apply the rod system at the nonradiculopathy side and distract the disc space	49
After thinning by using a drill, resect the inferior articular process of the cranial vertebral body with a chisel or bone cutter, thereby uncovering the neural foramen.	50
After resection of the upper medial parts of the superior articular facet, the neural foramen is opened	
Cancellous bone is introduced into the intervertebral disc space and brought to the anterior longitudinal ligament	54
Steps of Boomerang cage insertion	55
After insertion of the cage from a unilateral approach, the final position of the structural graft is checked visually and radiologically	
	apophyseal joints showing decrease in nucleus hydration, loss of demarcation between anulus and nucleus with age, and appearance of circumferential fissures by the 3rd decade

Figure (20):	After tightening and cross-linking of the rodscrew system, perform a posterolateral fusion with bone graft over the transverse processes
Figure (21):	These photographs dramatically show reduction in strain on posterior implants when a cage is placed in intervertebral disc space
Figure (22):	These data represent a summation of five biomechanical studies of stability after anterior cage placement in human cadaveric models and three studies of posterior cage placement
Figure (23):	(A) The anterior disc height (A-height), posterior disc height (P-height) measured at the L5-S1 segment on postoperative lateral radiography
Figure (24):	Comparison between unilateral group and bilateral groups regarding age84
Figure (25):	Comparison between unilateral group and bilateral groups regarding sex84
Figure (26):	Comparison between unilateral group and bilateral groups regarding diagnosis85
Figure (27):	Comparison between unilateral group and bilateral groups regarding level85
Figure (28):	Comparison between unilateral group and bilateral groups regarding operation time
Figure (29):	Comparison between unilateral group and bilateral groups regarding intraoperative blood loss87
Figure (30):	Comparison between unilateral group and bilateral groups regarding duration of pain killer use88

Figure (31):	Comparison between unilateral group and bilateral groups regarding hospital length of stay	88
Figure (32): (Comparison between unilateral group and bilateral group regarding The Visual Analog Scale for back Pain	90
Figure (33):	Comparison between preoperative and postoperative Visual Analog Scale for back Pain in unilateral group	90
Figure (34):	Comparison between preoperative and postoperative Visual Analog Scale for back Pain in bilateral group	91
Figure (35):	Comparison between unilateral group and bilateral group regarding The Visual Analog Scale for leg Pain	93
Figure (36):	Comparison between preoperative and postoperative Visual Analog Scale for leg Pain in unilateral group	93
Figure (37):	Comparison between preoperative and postoperative Visual Analog Scale for leg Pain in bilateral group	94
Figure (38):	Comparison between unilateral group and bilateral group regarding the Oswestry disability index ODI	96
Figure (39):	Comparison between preoperative and postoperative Oswestry disability index ODI in unilateral group	96
Figure (40):	Comparison between preoperative and postoperative oswestry disability index ODI in bilateral group	97
Figure (41):	Comparison between unilateral group and bilateral group regarding Surgical segment disc height(DH) increasing postoperatively	98

Figure (42):	Comparison between unilateral group and bilateral group regarding Cranial. Adjacent segment DH reduction in (1-6- 12 months) postoperative	00
Figure (43):	Comparison between unilateral group and bilateral group regarding caudal adjacent segment DH reduction in (1-6-12 months) postoperative)2
Figure (44):	Comparison between unilateral group and bilateral group regarding Fusion grade at 6 months postoperatively)4
Figure (45):	Comparison between unilateral group and bilateral group regarding Fusion grade at 12 months postoperatively)4
Figure (46):	Comparison between unilateral group and bilateral group regarding postoperative complications)5

List of Cases

Cases N	lo.	Title	Page No.
Case (1)			107
Case (2)	•••••		111
Case (3)	•••••		116
Case (4)			120

Introduction

L umbar arthrodesis is a commonly performed surgical procedure for the treatment of spondylosis, trauma, infection, neoplasm, and spinal instability.

A posterolateral fusion with autologous bone graft has traditionally resulted in acceptable clinical results; however, reported fusion rates have been Inconsistent (**Dickman et al., 1992**).

With the addition of internal fixation using pedicle screw instrumentation, fusion rates have improved significantly especially in cases of instability.

Performing an interbody arthrodesis may further Improve the clinical results by eliminating the disc as a potential pain generator, Improving fusion rates, and restoring intervertebral height and lumbar lordosis (Vaccaro, 2002).

Techniques to achieve anterior column interbody fusion include anterior lumbar interbody fusion (ALIF), posterior lumbar interbody fusion (PLIF) or transforaminal lumbar Interbody fusion (TLIF) (JavemickKuklo, 2006).

Over the last decade, TLIF has become a popular technique for achieving interbody fusion. The TLIF approach may reduce the risk of iatrogenic neurologic injury when compared with PLIF and provide a circumferential arthrodesis and avoid anterior spinal exposure and its associated complications (Mayer, 2006).

The TILF approach carried out from the side that was symptomatic (Paul et al., 2008).

Bilateral Pedicle Screw (PS) Fixation after lumbar interbody fusion is accepted as a standard procedure. Providing rigid fixation, bilateral PS fixation has a great biomechanical stability and clinical benefits. However, the rigidity of bilateral PS fixation can lead to device-related osteoporosis of the vertebrae and makes the adjacent segment prone to load- and motion-induced degeneration. Therefore, the use of less rigid systems of fixation has been advocated. Some recent clinical and biomechanical studies on the suitability of unilateral Pedicle Screw fixation have demonstrated that a reliable fusion with fewer pedicle screws can be achieved (**Liu et al., 2014**).