Role of Tomosynthesis with correlation to 2D Mammography in characterization of breast lesions in dense breast

Thesis

Submitted for partial fulfillment of Mater Degree in Radiology

Вy

Lobaba Mohamed Osman Abd Elrahman

MBBS. Gezira University (Sudan)

Supervised by

Prof. Dr. Aida Mohamed Elshibiny

Professor of Radiology Faculty of Medicine-Ain Shams University

Dr. Marwa El Sayed Abd Elrahman

Lecturer of Radiology
Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain Shams University **2019**

سورة المؤمنون _ آية ٢٩

Acknowledgments

All thanks to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Aida Mohamed Elshibiny,** Professor of Radiology,

Ain -Shams University for her great support and advice, her valuable remarks that gave me the confidence and encouragement to fulfill this work. I really have the honor to complete this work under her supervision.

I would like also to express my deep gratitude to **Dr. Marwa El Sayed Abd Elrahman,** Lecturer of Radiology,

Faculty of Medicine, Ain Shams University, for her generous help, guidance and patience through all stages of this work.

Last but not least, I would like to express my deepest thanks, gratitude and love for my family.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
List of Cases	vii
Abstract	viii
Introduction	1
Aim of the Work	3
Review of Literature	
Radiological Anatomy of the Breast	4
Breast Density	7
Physical Principles and Technique of Tomosynthesis	14
Manifestations of different breast lesions by tomosynthesis compared to mammography	
Patients and Methods	
Results	33
Illustrative Cases	51
Discussion	71
Summary and Conclusion	81
References	84
Arabic Summary	

List of Abbreviations

Abbr. Full-term

2D	Two Dimensional
3D	Three Dimensional
ACR	American college of Radiology
BIRADS	
	Breast Imaging And Reporting Data System
CC	Craniocaudal
DBT	Digital Breast Tomosynthesis
DCIS	Ductal Carcinoma In Situ
DM	Digital mammography
FDA	Food and Drug Administration
FFDM	Full field digital mammography
FN	False negative
FP	False positive
Hz	Hertz
MLO	Medio-lateral Oblique
MRI	Magnetic resonance imaging
PPV	Positive predictive value
RCTs	Randomized Control Trials
RRL	Relative Radiation Level
SD	standard deviation
STORM	Screening with Tomosynthesis OR standard
	Mammography
TN	True negative
TP	True positive
US	Ultrasonography

List of Tables

Table No	Title	Page No.
Table (1):	BIRADS assessment categories accord BIRADS atlas 2013	
Table (2):	Age distribution of the patients participate the study	
Table (3):	Distribution of cases according to the BIRADS lexicon breast density classific	
Table (4):	Distribution of groups according mammography findings	-
Table (5):	Mass Shape according to mammo findings	ography 37
Table (6):	The distribution of masses entities into be malignantlooking according to mammogra	_
Table (7):	The results of BI-RADS by mammograph	phy 40
Table (8):	Distribution of groups according Tomosynthesis results.	
Table (9):	Mass shape characterization by Tomosynt	hesis42
Table (10):	The distribution of masses entities into and malignant looking according Tomosynthesis.	ng to
Table (11):	Results of BIRADS by Tomosynthesis.	45
Table (12):	Comparison between Mammography & Tomosynthesis by BIRADS	
Table (13):	Results of pathology	47
Table (14):	Diagnostic indices of Mammograph Tomosynthesis.	

List of Figures

Figure No.	Title	Page No.
Figure (1):	Mammographic medio-lateral- (MLO) projection of a normal bre	-
Figure (2):	Mammographic cranio-caudal projection of a normal breast	
Figure (3):	ACR BI-RADS® Mammograph ACR BI-RADS® Atlas 2013	
Figure (4):	Photograph of prototype Digital Tomosynthesis unit	
Figure (5):	Schematic view of digital tomosynthesis.	
Figure (6):	An illustrative example of digital tomosynthesis acquisition geometric the reconstructed tomographic image	ry with breast
Figure (7):	Craniocaudal (CC) right imag mediolateral oblique (MLO) left in performed	mage is
Figure (8):	Comparison of screening mammo with breat tomosnthesis in a 5 woman	7y old
Figure (9):	Micropapillary type ductal car insitu in a 65-year-oldwoman	
Figure (10):	Invasive ductal carcinoma in a 4 old woman with a lump in the lef for 6 months	t breast

Figure (11):	Improved visualization of architectural distortion at DBT
Figure (12): I	Hamartoma in a 38-year-old woman with a breast asymmetry at baseline screening mammography
Figure (13):	Full field digital mammography (FFDM) shows multiple masses and calcifications 25
Figure (14):	Pleomorphic calcifications in a linear distribution in the lower left breast
Figure (15):	Distribution of cases according to the ACR BIRADS lexicon breast density 35
Figure (16):	Distribution of groups according to mammography findings
Figure (17):	Mass shape characterization by mammography37
Figure (18):	The distribution of the different masses into benign and malignant by mammography
Figure (19):	Distribution of calcification in mammography
Figure (20):	Mammography BI-RADS categories 40
Figure (21):	Distribution of groups according to Tomosynthesis results
Figure (22):	Mass shape characterization by Tomosynthesis
Figure (23):	The distribution of the different masses into benign and malignant by Tomosynthesis

Figure (24):	The distribution of calcification in Tomosynthesis
Figure (25):	The results of BIRADS by Tomosynthesis 45
Figure (26):	Comparison between Mammography & Tomosynthesis by BIRADS
Figure (27):	Final results according to pathology48
Figure (28):	Diagnostic indices of Mammography and Tomosynthesis
Figure (29):	Mammography and Tomosynthesis CC and MLO views of both breasts
Figure (30):	Mammography and Tomosynthesis CC & MLO view
Figure (31):	Mammography and Tomosynthesis CC &MLO view
Figure (32):	Mammography and Tomosynthesis CC &MLO view
Figure (33):	Mammography and Tomosynthesis CC & MLOview
Figure (34):	Mammography and Tomosynthesis CC and MLO views
Figure (35):	Mammography and Tomosynthesis CC& MLO views
Figure (36):	Mammography and Tomosynthesis MLO and CC views

List of Cases

Case No.	Title	Page No.
Case (1):		51
Case (2):		53
Case (3):		56
Case (4):		59
Case (5):		62
Case (6):		64
Case (7):		67
Case (8):		68

ABSTRACT

Background: Digital Breast Tomosythesis is a new technology of digital mammography that enables the acquisition of three dimensional volume of thin section data, and thus reduces or eliminates tissue overlap especially in dense breast, such ability allow visualization of cancers not apparent by digital mammography and differentiate between benign and malignant lesion.

Objectives: to compare the efficacy of digital breast Tomosynthesis (BDT) to digital Mammography (DM) in diagnosis of different breast lesions in dense breast.

Patients and Method: in this prospective study 30 patients with breast density ACR/C and ACR/D were assessed by Digital Mammography and Digital Breast Tomsynthesis. Each lesion was assigned a blinded category in an individual performance for each modality. The resultant BI-RADS categories were correlated with report of the pathology specimens or outcome follow up.

Results: Both modalities were compared regarding characterization, using Chi Square test (p value:0.035). The sensitivity, specificity and accuracy of digital mammography was 62.5%, 68.75% and 66% have significantly increase with tomosynthesis to be 100%, 91% and 97% respectively.

Conclusion: Digital breast tomosythesis significantly enhanced characterization of breast lesions than digital mammography in dense breast parenchyma (ACR/C and ACR/D).

Key Words: ACR density –Digital Breast Tomosynthesis – Digital mammography

Introduction

etection of breast lesions is important for future evaluation and predicting the risk of malignancies (*Cheung et al.*, 2014).

Mammography is the breast imaging technique for both clinical and screening purposes. Nevertheless, the limitations of mammography are well-known. These deficits stem largely from the superimposition of normal breast structures in the path of the X-ray beam leading to false positive results and diminishing the examination specificity. Conversely, normal breast tissue elements that lie outside the plane of interest can obscure an abnormality leading to false negative results and decreasing the examination sensitivity (*Poplack et al., 2007*).

Breast density was assigned according to the BI-RADS edition (2013) to a, b, c and d-categories (a: the breast is almost entirely fatty, b: scattered areas of fibroglandular density, c: the breast is heterogeneously dense, and d: the breast is extremely dense (*D'Orsi et al.*, 2013).

Digital breast tomosynthesis (DBT) is an imaging technology that provides a three dimensional reconstruction of the breast from a limited angle scan involving a series of low dose mammographic exposures (*Vendatham et al.*, 2015), thus increasing sensitivity in detecting cancers (*Lang et al.*, 2016).

Digital breast tomosynthesis is of interest for screening and diagnostic procedures because it enables 3D studies evaluating tomosynthesis in the screening population where it has been shown to reduce recall rates and increase the sensitivity and specificity for breast cancer detection (*Lei et al.*, 2014). The use of DBT has been shown to increase the diagnostic confidence of radiologists in lesions detection and margin characterization (*Yang et al.*, 2013).

Aim of the Work

To compare the efficacy of digital breast Tomosynthesis (BDT) as compared to digital Mammography (DM) in diagnosis of different breast lesions in dense breast.

Radiological Anatomy of the Breast

The breast is a symmetrical organ located on the front of the chest on both of the each side of the midline. It occupies an area that stretches from the third rib to the seventh rib and from the edge of the sternum to the armpit. The volume, shape and degree of development are very variable in relation to various factors such as age, gland development, and amount of fat and relative influence of endocrine stimulation (*Balboni et al.*, 2000).

Normal mammographic anatomy

The mammographic appearance of the normal breast depends on the amount of the main components: the fat tissue appears radiolucent, the stroma and the gland appear radiopaque. The sensitivity of mammography powerfully depends on the density of the breast. A mammogram is usually performed in two projections, the MLO (mediolateral-oblique) and CC (cranio-caudal) after compression (Figs. 1,2) (*De Benedetto et al., 2016*).

The skin appears as a thin, continuous, radiopaque rim of homogeneous density, of about 1 mm well distinguishable from the radiolucency of the underlying subcutaneous fat tissue. The areola usually has a thickness of 3-5 mm with a central opacity of cylindrical shape corresponding to the nipple. Posteriorly there is the retro areolar region that is a triangular-shaped area which is of particular interest because it