Cord Thiobarbituric Acid Reactive Substances (TBARS) as a predictor for early onset sepsis in preterm

Thesis submitted for partial fulfillment of Master degree in pediatrics

By

Ahmed Mohamed Ahmed Emam

M.B, B.Ch

Under supervision of

Dr. Rania Ibrahim Hossni Ismail

Assistant Professor of Pediatrics Faculty of Medicine – Ain Shams University

Dr. Hebat Allah Ali Shaaban

Lecturer of Pediatrics
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2019

داعمإ

إلى والدي و والدتي مغظمها الله تعالى.

إلى زوجتي الغالية وفيقة الدرب و العياة.

إلى شمداء الوطن من المدنيين و أفراد و ضباط المين شمداء الوطن من المدنيين و

إلى قادتي العظام بالقوابد المسلحة المصرية.

اللي أساتذتي الكرام أصداب الفضل الكبير بكلية المي أساتذتي الكرام أصداب

إلى اولياء امور الأطفال الذين كانوا تدت الدراسة لمي المراسة ال

INDEX

Index	<i>i</i>
List of Tables	<i>ii</i>
List of Figures	iv
List of Abbreviations	ix
Introduction	1
Review	5
Chapter (1): Preterm Infants	5
Chapter (2): Neonatal Sepsis	22
Chapter (3): Oxidative Stress	36
Subject and Methods	48
Results	55
Discussion	88
Summary	97
Conclusion	100
Recommendation	101
References	102

LIST OF TABLES

	Page
Table (1):	Absolute neutrophil count with gestational age 26
Table (2):	Tollner sepsis score
Table (3):	Downes' score
Table (4):	Comparison between sepsis group and control group regarding demographic data
Table (5):	Comparison between sepsis group and control group regarding risk factors of neonatal sepsis
Table (6):	Comparison between sepsis group and control group regarding clinical examination, vital signs and Tollner score
Table (7):	Comparison between sepsis group and control group regarding local examination
Table (8):	Comparison between sepsis group and control group regarding lab examination, Rowdwells score and chest X-ray
Table (9):	Comparison between sepsis group and control group regarding Cord TBARS nmol/ml

Table (10):	Comparison between sepsis group and control group
	regarding outcome
Table (11):	Correlation of Cord TBARS (nmol/ml) with all the
	studied parameters in all patients, sepsis group and
	control group70
Table (12):	Comparison of TBARS between different parameters
	in all studied cases
Table (13):	Roc curve of sepsis diagnosis
Table (14):	Roc curve of sepsis prognosis
Table (15):	Logistic regression analysis for predictors of sepsis
	group

LIST OF FIGURES

	Page
Figure (1):	New Ballard score
Figure (2):	EOS pathology23
Figure (3):	Rodwell hematological scoring
Figure (4):	Comparison between sepsis group and control group regarding Gestational age
Figure (5):	Comparison between sepsis group and control group regarding birth weight
Figure (6):	Comparison between sepsis group and control group regarding length
Figure (7):	Comparison between sepsis group and control group regarding occipitofrontal circumference
Figure (8):	Comparison between sepsis group and control group regarding risk factors
Figure (9):	Comparison between sepsis group and control group regarding activity
Figure (10)	: Comparison between sepsis group and control group regarding color

Figure (11):	Comparison between sepsis group and control group
	regarding capillary refilling 61
Figure (12):	Comparison between sepsis group and control group regarding Downes score, Tollner score and Apgar score
Figure (13):	Comparison between sepsis group and control group regarding vital signs
Figure (14):	Comparison between sepsis group and control group regarding moro reflex
Figure (15):	Comparison between sepsis group and control group regarding suckling reflex
Figure (16):	Comparison between sepsis group and control group regarding platelets level
Figure (17):	Comparison between sepsis group and control group regarding Rowdwells score
Figure (18):	Comparison between sepsis group and control group regarding Chest X-ray
Figure (19):	Comparison between sepsis group and control group regarding Cord TBARS nmol/ml

Figure	(20):	Comparison	between s	sepsis	group an	d control gr	oup
		regarding fat	te	•••••	•••••	•••••	. 69
Figure	(21):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		GA (weeks)	in all the	studie	d cases		. 72
Figure	(22):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		weight (kg)	in all the	studied	d cases	•••••	. 72
Figure	(23):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		length (cm)	in all the	studied	d cases	•••••	. 73
Figure	(24):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		OFC (cm) in	all the st	udied	cases	•••••	. 73
Figure	(25):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		Downs score	e in all the	e studio	ed cases.	•••••	. 74
Figure	(26):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		APGAR sco	re in all tl	ne stud	lied cases	5	. 74
Figure	(27):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		heart rate in	all the stu	idied c	eases		. 75
Figure	(28):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		respiratory r	ate in all t	the stu	died case	es	. 75
Figure	(29):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		SBP (mmHg) in all th	e studi	ied cases		. 76

Figure	(30):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		DBP (mmH	g) in all th	ne stud	lied cases	•	76
Figure	(31):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		Tollner scor	e in all th	e studi	ed cases.	•••••	77
Figure	(32):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		hematocrit (%) in all 1	the stu	died case	2S	77
Figure	(33):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		TLC (*103)	in all the	studie	d cases	••••••	78
Figure	(34):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		platelets in a	all the stud	died ca	ises	••••••	78
Figure	(35):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		12h CRP in	all the stu	idied c	ases	••••••	79
Figure	(36):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		Rowdwells	score in a	ll the s	tudied ca	ses	79
Figure	(37):	Correlation	between	Cord	TBARS	(nmol/ml)	and
		Admission (days) in a	ill the	studied ca	ases	80
Figure	(38):	Comparison	of TBAI	RS bet	ween cas	ses with PR	OM
		and without	•••••	•••••	•••••	•••••	82
Figure	(39):	Comparison	of TBAR	S bety	ween case	es with posi	itive
		and negative	e blood cu	ılture	•••••	•••••	83

Figure (40):	Comparison of TBARS between cases with normal,
	ground glass appearance and prominent pre-hilar
	streaking chest x- ray
Figure (41):	Comparison of TBARS between discharged and died cases
Figure (42):	Roc curve of sepsis diagnosis85
Figure (43):	Roc curve of sepsis prognosis86

LIST OF ABBREVIATIONS

AUC : Area under the ROC curve

BPD : Bronchopulmonary dysplasia

CAT : Catalase

CBC : Complete blood picture

CI : confidence interval

CRP : C-reactive protein

DHA : Docosahexaenioc acid

DIC : Disseminated intravascular coagulation

EOS : Early onset sepsis

FFP : Fresh frozen plasma

GBS : Group B streptococci

GERD : Gastroesophageal Reflux disease

GTPx : Glutathione peroxidase

Hib : Haemophilus influenzae type b

HIE : Hypoxic-ischemic encephalopathy

HOCl : Hypochlorous acid

ICSI : Intra-cytoplasmic sperm injection

IL : Interleukin

IUGR : Intrauterine growth restriction

IVH : Intraventricular hemorrhage

LBW: low birth weight

LOS : late-onset sepsis

LPS: Lipopolysaccharides

MABP : Mean arterial blood pressure

MDA : Malondialdehyde

MPO : Myeloperoxidase

NEC : Necrotizing Enterocolitis

PDA : Patent ductusarteriosus

PRBCs: Packed red blood cells

PROM : Preterm rupture of membranes

PVL : Periventricular leukomalacia

RDS : Respiratory distress syndrome

RNS : Reactive nitrogen species

ROC : Receiver operating characteristic curve

ROP : Retinopathy of prematurity

ROS : Reactive oxygen species

SOD : Superoxide dismutase

TBARS : Thiobarbituric acid reactive species

TNF-alpha: Tumor necrosis factor alpha

VLBW : very low birth weight

ABSTRACT

Background:

Neonatal sepsis (NS) promotes unbalanced production of oxidant and anti-oxidant substances, causing excess of free oxygen radicals which may lead to tissue damage. NS carries high risk of morbidity and mortality, thus identification of biomarker to optimize early diagnosis and therapeutic interventions is highly desirable.

Objectives:

To detect cord blood thiobarbituric acid reactive substance (TBARS) in preterm neonates with maternal risk factor for sepsis as predictors of early onset neonatal sepsis (EOS).

Methodology:

Cord TBARS was measured in 80 preterm neonates with antenatal risk factors for EOS, and classified into two groups: sepsis (n=25) and no-sepsis (n=55).

Results:

TBARS was significantly higher in sepsis than no-sepsis groups $10.50~(6.5~\Box~20.5)~vs~3.00~(2.2~-3.8)~nmol/ml,~(p=0.000)$. TBARS was significantly higher in culture proven sepsis than negative culture patients. TBARS was significantly higher in died neonates than survivors.

Conclusion:

Cord TBARS in preterm neonates with maternal risk factor for sepsis can be used as diagnostic and prognostic biomarker for EOS.

INTRODUCTION

Neonatal sepsis is a single most important cause of neonatal deaths worldwide, accounting for over half of them. If diagnosed early and treated aggressively it is possible to save most cases of neonatal sepsis (Khinchi et al, 2010).

Neonatal sepsis is defined as a clinical syndrome characterized by signs and symptoms of infection with or without accompanying bacteremia in the first month of life (Sankar et al., 2008).

Neonatal sepsis can be classified into two sub-types depending upon whether the onset of symptoms is before 72 hours of life (early onset) or later (late onset). Surviving infants can have significant neurologic squeals as a consequence of central nervous system involvement, septic shock or hypoxemia secondary to severe parenchymal lung disease (Baley and Goldfark, 2001).

Early onset sepsis (EOS), with an onset during the first 72 hours of life is caused by organisms prevalent in the maternal genital tract or in the labour room and maternityoperation theatre. The Risk factors for EOS include prematurity, low birth weight, premature and prolonged rupture of membranes, maternal fever, uroinfection and chorioamnionitis (Chacko and Sohi 2005).

The incidence of EOS was 20.7 per 1000 live births and it constituted 55.4% of overall sepsis (Baley and Goldfark, 2001).

Early diagnosis and treatment are vital to improve outcomes. Preterm neonates developing infection commonly have nonspecific clinical symptoms, and in the absence of reliable infection markers during the first hours of life, pediatricians often start early antibiotic treatment in newborn infants with risk factors for infection, exposing a considerable number of patients to unnecessary treatment (Santana et al., 2001).

It is well known that during inflammatory response oxidative damage occurs, and it seems that this is relevant to sepsis development. Oxidative damage could modify all biomolecules including DNA, lipids, and proteins (**Krueger et al., 2001**).

The oxidized molecules could be measured in biological fluids, being protein carbonyls (as a marker of protein oxidation) and thiobarbituric acid reactive species (TBARS, as a marker of lipid oxidation), the most frequently oxidative stress markers measured in humans. These markers are present in animal models (Døllner et al., 2001).

Oxidizing agents can alter lipid structure, creating lipid peroxides that result in the formation of malondialdehyde (MDA), which can be measured as Thiobarbituric Acid Reactive