

Assessment of Vitamin D Deficiency in Critically III Children

Thesis

Submitted for partial fulfillment Of Master Degree in Pediatrics

BY Passant Marzouk ABD EL-Wahab El-Hefnawy (M.B.B.Ch-Ain-Shams University 2009)

Supervised by

Prof. Dr. Farida AL-Baz Mohammed

Professor of Pediatrics Faculty of Medicine Ain-Shams University

Dr. Nadin Nabil Toaima

Lecturer of Pediatrics Faculty of Medicine Ain-Shams University

Dr.Nesma Ahmed Safwat

Lecturer of clinical pathology Faculty of Medicine Ain-Shams University

> **Faculty of Medicine Ain Shams University**

> > 2019

Acknowledgment

First and foremost, I feel always indebted to

my GOD

the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Farida AL-Baz Mohammed, Professor of Pediatrics - Faculty of Medicine-Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Nadin Nabil Toaima, lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to

Dr. Nesma Ahmed Safwat, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kindness, supervision, great help, active participation, guidance and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Passant Marzouk ABD EL-Wahab El-Hefnawy

List of Contents

Title	Page No.
List of Tables	Error! Bookmark not defined.
List of Figures	Error! Bookmark not defined.
List of Abbreviations	Error! Bookmark not defined.
Introduction	1
Aim of the Work	4
Review of Literature	
•Vitamin D	5
•Critically ill children and vit	amin D status32
Patients and Methods	51
Results	63
Discussion	101
Summary and Conclusions	,116
Recommendations	120
References	122
Arabic Summary	

List of Tables

Table No.	Title F	Page No.
T 11 (1)		. ,
Table (1):	Various Food, Nutritional Supplement	
m 11 (a):	Pharmaceutical Forms of Vitamin D	
Table (2):	Recommended adequate dietary inta	
m 11 (a):	vitamin D	
Table (3):	Risk Factors of Vitamin D Deficien	•
	Pediatric Patients	
Table (4):	PRISM III	
Table (5):	Assessment Cardiovascular Score	
Table (6):	SOFA) Demographic data of the studied cases	
Table (7):	Clinical characteristics of studied cases	
Table (1):	Demographic data of the control group	
Table (9):	Etiology of PICU admission	
Table (3):	PRISM III score of studied samples	
Table (10):	CV-SOFA score of studied samples	
Table (11):	CRP level in studied group	
Table (12):	The need for mechanical ventilation	
Table (15).	results of blood and sputum cultures a	
	studied sample	_
Table (14):	Vitamin D status among patients grou	
Table (15):	Vitamin D status among control group	-
Table (16):	Comparison between survivors &	
14810 (10)	survivors as regard age, sex and ho	
	stay	_
Table (17):	Comparison between survivors	
14310 (11)	nonsurvivors as regard diagnosis	
	presence of chronic disease	
Table (18):	Comparison between survivors	
	nonsurvivors as regard PRISM III scor	
	CV-SOFA score:	

List of Tables (Cont...)

Table No.	Title	Page No.
, .		
Table (19):	Comparison between survivors	
Table (20):	nonsurvivors as regard CRP value Comparison between survivors	
Table (20).	nonsurvivors as regard med	
	ventilation and cultures:	
Table (21):	comparison between survivors	and
	nonsurvivors as regard vitamin D lev	
Table (22):	Multivariate logistic regression anal	•
T 11 (00)	predictors of mortality	
Table (23):	Receiver Operating Characteristic (ROC) for CRP2 as a predictor for mo	
Table (24):	Comparison between cases and cor	•
14510 (24)	regard vitamin D level and vita	
	status:	
Table (25):	Comparison between vitamin D le	
	regard age, sex, weight and hospital	-
Table (26):	Comparison between patients as	_
	order of birth, exposure to su	
Table (27):	supplementation of vitamin D: Comparison between different vita	
1 able (21).	levels as regard diagnosis, chronic	
	and discharge data	
Table (28):	Comparison between different vita	
	levels as regard PRISM III score a	
m 11 (22):	SOFA score:	
Table (29):	Comparison between different vita	
	levels as regard need for med ventilation, blood and sputum culture	
Table (30):	Correlation between vitamin D lev	
14010 (00)	different clinical parameters, PRISM	
	SOFA, hospital stay and CRP level	

List of Tables (Cont...)

Table No.	Title F	Page No.
Table (31):	Comparison of studied cases according sex, diagnosis, chronic disease, discutation, CRP compared blood and sputum cultures as respectively.	charge ourse, regard
Table (32):	witamin D level	sis for

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Schematic representation of the synt and metabolism of vitamin D	
Figure (2):	Metabolism of 25-hydroxyvitamin [25(OH)D] to 1,25 dihydroxyvitamin 1,25(OH)2D for non-skeletal functions.	n D
Figure (3):	The antiproliferative, prodifferential functions of 1,25(OH)2D. One potential role for extrarenal VDR is to product sufficient 1,25(OH)2D within the compromote its differentiation and limit	ting ntial duce ell to t its
Figure (4):	The regulation of hormone secre by endogenous production	tion of
Figure (5):	1,25(OH)2D. Two examples are sho 1,25(OH)2D regulates both adap (a) and innate (b) immunity	otive
Figure (6):	Serum calcium concentrations plo against 250HD concentrations (and vitamin D intake (right) in infa and children with vitamin intoxication. Data are derived for reported cases of intoxication (24 – Depicted values are those on clir presentation and before therapeutic intervention. As pati- came to medical attention at var- time points after ingestion, the pa- 250HD concentrations may have be	tted left) ants D rom -35). nical any ents ious beak
Figure (7):	missed in some of these reports Pie chart showing sex distribu	
rigure (1).	among patients	
Figure (8):	Pie chart showing sex distribution among control group	
Figure (9):	Etiology of PICU admission	

List of Figures (Cont...)

Fig. No.	Title	Page 1	No.
E: (10):	D: 1 / 1 : 1: / 1 /:	c	
Figure (10):	Pie chart showing distribution chronic disease among patients		68
Figure (11):	Bar chart showing CRP level	in	
Figure (12):	studied group Pie chart showing distribution of r	need	
Figure (13):	for mechanical ventilation	lood	
Figure (14):	cultures during admission Bar chart showing results of spu	tum	
Figure (15):	cultures during admission Pie chart showing distribution Vitamin D status among patie	of	73
Figure (16):	groupPie chart showing Vitamin D sta	atus	
Figure (17):	among control group Bar chart showing sex distribu	tion	
Figure (18):	among survivors and non survivors Distribution of causes of admis	sion	
Figure (19):	among survivors and non-survivors Comparison between survivors nonsurvivors as regard PRISM	and	78
Figure (20):	scoreComparison between survivors	and	
Figure (21):	nonsurvivors as regard CRP 2 level Comparison between survivors	and	
Figure (22):	nonsurvivors as regard CRP course Comparison between survivors nonsurvivors as regard mechan	and	81
Figure (23):	ventilation. Comparison between survivors		83
_	nonsurvivors as regard results of b cultures.	lood	83

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (24):	Comparison between survivors nonsurvivors as regard results sputum cultures	s of
Figure (25):	CRP 2 is the most predictor mortality with sensitivity 60%	for
Figure (26):	Comparison between cases and cor group as regard vitamin D st	ntrol
Figure (27):	(deficient, insufficient and sufficient Comparison between cases group control group regarding vitamin level	and n D
Figure (28):	Comparison between different vita D status group regarding PICU sta	
Figure (29):	Correlation between vitamin D land weight & weight SDS	level
Figure (30):	Correlation between vitamin D land PICU stay	level
Figure (5):	1,25(OH)2D regulates both adap	otive

List of Abbreviations

Full term Abb. ACCM American College of Critical Care Medicine AUC Area under curve BUN..... Blood urea nitrogen CaR.....calcium sensing receptor CBC...... Complete blood count CL confidence interval CPR...... Cardiopulmonary Resuscitation CRP...... C-reactive protein CV-SOFA...... Cardiovascular Score Sequential Organ Failure CYP24A1...... cytochrome p450 D......day DBP.....Dibutyl phthalate Dl.....deciliter EDTA.....Ethylenediaminetetraacetic acid ELISA Enzyme linked Immune Assay FGF23..... Fibroblast Growth Factor 23 HIV Human immunodeficiency virus ICU intensive care unit IIHidiopathic infantile hypercalcemia *IQR.....* inter-quartile range IU.....International unit IV.....Intravenous Kg..... Killogram L.....Liter M2..... metersquare MED..... minimal erythemal dose Meq..... Miliequvilant

List of Abbreviations cont...

Abb. Full term ML.....milliliter MMR.....Maternal Mortality Rate MODS.....multiple Organ **Dysfunction** Syndrome MRSA.....Methicillin-resistant Staphylococcus aureus NG...... No Growth ng..... nanogram nmol.....nanomol *Oz.....ounce* PAMP...... Pathogen-associated molecular pattern Paco2..... Arterial carbon dioxide partial pressure Pao2.....rterial oxygen partial pressure PES.....Pediatric Endocrine Society PICU..... pediatric intensive care unit PMNs..... polymorphonuclear cells PRISM III...... Pediatric Risk of Mortality score III PT.....Prothrombin time PTH.....Parathyroid hormone. PTT.....Partial thromboplastin time ROC Receiver operating characteristic curve SC.....Subcutaneous SUL.....Safe Upper Levels TLR.....toll-like receptors Treg..... regulatory T-cell USA United states of American

UV...... Ultraviolet

VDD Vitamin D Deficiency VDR Vitamin D Receptor

List of Abbreviations cont...

WBC..... White blood count

WHO...... World Health Organization

Introduction

Introduction

Vitamin D plays an important role, not only for bone health, but also in the immune system. Both in vitro and clinical studies have demonstrated that vitamin D is important for the innate and adaptive immune response. In adults, vitamin D insufficiency is common in patients who are hospitalized or have a severe infectious process and is associated with increased mortality (*Moromizato et al.*,2014).

Vitamin D enhances the antimicrobial response of monocytes of adults suggesting a protective role of vitamin D in infection. Similar links between vitamin D status and the immune system have been shown in pediatric populations. For example, children with cystic fibrosis, who suffer from chronic respiratory infections, have a high prevalence of vitamin D insufficiency that is associated with increased risk of pulmonary exacerbations (*McCauley et al., 2014*).

Many children are admitted to a pediatric intensive care unit (PICU) with serious infections or with a high chance of acquiring nosocomial infection once admitted. Severe blood stream infections alone account for significant morbidity and mortality. Adequate nutritional support has been a mainstay in

PICU management with research showing improved outcomes and fewer hospital stay days (Carcillo et al., 2009).

However, there have been few studies to investigate the prevalence of vitamin D deficiency in critically ill children. Madden et al. found that 40% of children admitted to the pediatric intensive care unit had vitamin D deficiency (Madden et al., 2012).

The main purpose of the PICU is to prevent mortality by intensively monitoring and treating critically ill children who are considered at high risk of mortality. The capability to estimate patient risk of death is extremely important because such estimate would be useful in achieving many different goals such as assessing patient's prognosis, ICU performance, ICU resource utilization and also evaluating therapies, controlling and matching severity of illness in clinical studies (Poonam & Amit, 2008).

PRISM III is a pediatric physiology based score for mortality risk. Severity of illness calculated with Pediatric Risk of Mortality score III (PRISM III), that has 17 physiologic Subscores: