

NUMERICAL INVESTIGATION OF THE SOIL REPLACEMENT EFFECTIVENESS IN SWELLING CLAYS

By

Dalia Abdel Moneim Ali Mohamed Abo-Rageh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Civil Engineering - Public Works

NUMERICAL INVESTIGATION OF THE SOIL REPLACEMENT EFFECTIVENESS IN SWELLING CLAYS

By

Dalia Abdel Moneim Ali Mohamed Abo-Rageh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

Civil Engineering - Public Works

Under the Supervision of

Prof. Dr. Hussein H. Mamlouk	Assoc. Prof. Dr. Sherif Adel Akl
Professor of Geotechnical and	Associate Professor of Geotechnical and
Foundations Engineering	Foundations Engineering
Civil Engineering - Public Works Dep.	Civil Engineering - Public Works Dep.
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University
Dr. Mohamed	l El Taher

Lecturer
Civil Engineering
A'Sharqiyah University, Oman

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

NUMERICAL INVESTIGATION OF THE SOIL REPLACEMENT EFFECTIVENESS IN SWELLING CLAYS

By

Dalia Abdel Moneim Ali Mohamed Abo-Rageh

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Civil Engineering - Public Works

Examining Committee	
Prof. Dr. Hussein H. Mamlouk,	Thesis Main Advisor
Dr. Sherif Adel Akl,	Advisor
Prof. Dr. Ahmed Hisham Dakhly,	Internal Examiner
Prof. Dr. Khalid El Zahaby,	External Examiner

Professor of Geotechnical and Foundations Engineering Housing and Building National Research Center

Approved by the

Engineer's Name: Dalia Abdel Moneim Ali Mohamed Abo-Rageh

Date of Birth: 22/10/1978 **Nationality:** Egyptian

E-mail: dalia.abdelmoneim@yahoo.com

Phone: 01110454749
Address: Cairo, Egypt
Registration Date: 1 / 10 /2011
Awarding Date: / /2019

Degree: Doctor of Philosophy

Department: Civil Engineering- Public Works

Supervisors:

Prof. Hussein H. Mamlouk Assoc. Prof. Dr. Sherif Adel Akl

Dr. Mohamed El Taher

(A'Sharqiyah University, Oman)

Examiners:

Prof. Dr. Hussein H. Mamlouk (Thesis main advisor)

Dr. Sherif Adel Akl (advisor)

Prof. Dr. Ahmed Hisham Dakhily(Internal examiner)
Prof. Dr. Khalid El Zahaby (External examiner)
(Housing and Building National Research Center)

Title of Thesis:

Numerical investigation of the soil replacement effectiveness in swelling clays

Key Words:

Expansive soil; replacement soil; swelling pressure; heave; differential heave

Summary

The first part of the present thesis concerns with performing a numerical simulation of the swelling pressure test to evaluate the effect of SWCC shape on the swelling pressure. The second part concerns with performing a simulation of the replacement method to evaluate its effectiveness on the heave. The effect of the building stiffness on the swelling deformation was also studied. The impact of increasing the building stiffness of the first two stories of the building on the swelling deformation was also studied. The influence of the replacement soil depth and the building stiffness on the differential upward movement in different stories of a building was investigated. The ABAQUS software and Regina clay are used in this analysis. The present results show that the swelling pressure increases with decreasing the initial water content and increasing the initial soil suction. Higher replacement soil stiffness increases the differential heave between footings. Accordingly, a replacement layer with low stiffness is more suitable from heave point of view. Moreover, higher building stiffness tangibly reduces the differential heave between footings. The replacement soil thickness can be reduced by increasing the building stiffness. Increasing the building stiffness of the first two levels of a building can significantly reduce the differential heave. Replacement soils with high permeability produce higher heave compared to those with low permeability. However, they result in lower differential heave compared to the low permeability replacement soils.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Dalia Abdel Moneim Ali Date: / / 2019

Signature:

Dedication

I dedicate this work To my dear husband, Sameh Shaaban To my dear children, **Aseel Sameh and Ahmed Sameh** To my parents, **Abdel Moneim Ali and Mervat Mohamed**

Thank you all for your support during all these years.

Acknowledgments

The present research work was supervised by Prof. Hussein H. Mamlouk, Assoc. Prof. Sherif Adel Akl, and Dr. Mohamed El Taher.

I would like to express my thanks and gratitude to Prof. Hussein H. Mamlouk, Assoc. Prof. Sherif Adel Akl, and Dr. Mohamed El Taher for the continuous support, the helpful advice, and the valuable guidance throughout the present research work.

I also thank all my colleagues in the PhD program of the Faculty of Engineering, Cairo University for the valuable discussions.

Finally, I would like to express my special thanks and gratitude to my family for the patience and encouragement.

Cairo, 2019

Dalia Abdel Moneim

Table of Contents

LIST NON	Γ OF TABLES Γ OF FIGURES MENCLATURE	viii xiv
ABS CHA	TRACTAPTER 1: INTRODUCTION	xvı 1
1.1.	INTRODUCTION	
1.2.	RESEARCH SCOPE	
1.3.	RESEARCH METHODOLOGY	
1.4. CHA	THESIS OUTLINEAPTER 2: LITERATURE REVIEW	
2.1.	INTRODUCTION	
2.2	GENERAL CHARACTERISTICS OF SWELLING SOILS	4
2.3	EXPANSIVE SOIL STRUCTURE	5
	2.3.1 MICROSTRUCTURE OF EXPANSIVE SOILS	5
	2.3.2 MACROSTRUCTURE OF EXPANSIVE SOILS	8
2.4	MECHANISM OF SOIL SWELLING	9
2.5	FACTORS AFFECTING SWELL POTENTIAL AND SWELL PRESSU	RE.11
2.6	WATER IN EXPANSIVE SOILS	12
	2.6.1 ABSORBED WATER	12
	2.6.2 FREE WATER	12
2.7	SOIL SUCTION IN UNSATURATED SOILS	13
	2.7.1 MATRIC SUCTION	13
	2.7.2 OSMOTIC SUCTION	14
	2.7.3 MATRIC SUCTION PROFILE	15
2.8	DAMAGE TO STRUCTURES FROM EXPANSIVE SOILS	15
2.9	BASIC PARAMETERS OF EXPANSIVE SOIL CLASSIFICATION	18
2.10	IDENTIFICATION OF THE EXPANSIVE SOIL	19
	2.10.1 MINERALOGICAL COMPOSITION	19
	2.10.2 ENGINEERING CLASSIFICATION TESTS	19
	2.10.3 FREE SWELL TESTS	22
	2.10.4 OEDOMETER TEST	22
	2.10.5 EXPANSION CLASSIFICATION	24
2.11	PREDICTION OF HEAVE	26
	2.11.1 EMPIRICAL METHODS	26

2.11.2 SUCTION-BASED METHODS	28
2.11.3 OEDOMETER BASED METHODS	30
2.11.4 NUMERICAL METHODS	31
2.12 TREATMENT OF EXPANSIVE SOILS	31
2.12.1 MECHANICAL TREATMENT	31
2.12.2 MOISTURE CONTROL	38
2.12.3 MISCELLANEOUS TREATMENTS	40
2.12.4 CHEMICAL TREATMENT	41
2.13 NUMERICAL MODELING OF EXPANSIVE SOILS	42
2.13.1 STRESS STATE VARIABLES	42
2.13.2 VOLUME CHANGE OF UNSATURATED SOILS	43
2.13.3 MODELING OF UNSATURATED FLOW	46
2.13.4 SOIL WATER CHARACTERISTIC CURVE (SWCC)	
3.1. INTRODUCTION	
3.2. ANALYSIS OF POROUS MEDIA IN ABAQUS	
3.2.2 EFFECTIVE STRESS PRINCIPLE FOR POROUS MEDIA IN	
ABAQUS	
3.2.4 SOIL MECHANICAL BEHAVIOR IN ABAQUS	
3.2.5 COMPACTED REGINA CLAY PROPERTIES	
3.2.6 VALIDATION OF THE NUMERICAL MODEL	68
CHAPTER 4: EFFECT OF SWCC ON SWELLING PRESSURE	
4.1. INTRODUCTION	81
4.2. FINITE ELEMENT MODEL DESCRIPTION	81
4.3. PARAMETRIC STUDY OF THE PARAMETERS CONTROLLING THE SWCC SHAPE	82
4.3.1 EFFECT OF THE AIR ENTRY VALUE ON THE SWELLING PRESSURE	83
4.3.2 EFFECT OF RESIDUAL WATER CONTENT ON THE SWELLING PRESSURE	
4.3.3 EFFECT OF THE SLOP OF THE SWCC ON THE SWELLING PRESSURE	92
CHAPTER 5: NUMERICAL SIMULATION OF THE REPLACEMENT OF EXPANSIVE SOIL	•
5.1. INTRODUCTION	96

REFERENCES	166
CHAPTER 6: SUMMARY AND CONCLUSIONS	
BUILDING	
UPWARD MOVEMENT FOR DIFFERENT STORIES OF THE	
5.3.6 EFFECT OF BUILDING STIFFNESS ON THE DIFFERENTIA	L
5.3.5 EFFECT OF BUILDING STIFFNESS ON HEAVE	139
5.3.4 EFFECT OF WATER FLOW DIRECTION	127
5.3.3 EFFECT OF REPLACEMENT LAYER STIFFNESS ON HEAV	/E119
5.3.2 EFFECT OF REPLACEMENT LAYER PERMEABILITY ON	HEAVE
5.3.1 EFFECT OF REPLACEMENT LAYER THICKNESS	100
5.3. RESULTS AND ANALYSIS	100
5.2. NUMERICAL MODELING DESCRIPTION	96

List of Tables

Table 2.1: Estimated cost of damages due to undesirable heave/swell of expans	sive
soils (Gidigasu, 2013)	4
Table 2.2: Characteristics of the most common three clay minerals Zhang (200	4)7
Table 2.3: Relation between swelling potential and plasticity index (Morsi 201	0) 19
Table 2.4: Expansive soil classification based on plasticity and shrinkage index	
(Morsi, 2010)	21
Table 2.5: Typical values of activity for the different clay minerals (Nelson, 19	92)21
Table 2.6: Identification criteria for expansive soil (Morsi, 2010)	22
Table 2.7: Classification of expansive soils (Al-Rawas, 2006)	25
Table 2.8: Prediction of the swell percent under different surcharges (Schneide	r,
1974)	27
Table 2.9: Effective stress equations for unsaturated soils (Adem, 2015)	44
Table 2.10: Stress state variables for unsaturated soil (Morsi, 2010)	46
Table 2.11: Packages used for unsaturated flow modeling (Adem, 2015)	48
Table 3.1: Index properties of compacted Regina clay (Shuai, 1996)	62
Table 3.2: Mechanical properties of Regina expansive clay	64
Table 3.3: Fitting parameters of the void ratio-matric suction for Regina clay (Vu
2003)	65
Table 5.1: Properties of replacement soil	99
Table 5.2: Permeability function of the replacement soil	100
Table 5.3: SWCC of the replacement soil	100

List of Figures

Figure 2.1: Polygonal pattern of surface cracks in the dry season (Rogers 2015)5 Figure 2.2: A single silica tetrahedron and the sheet structure of silica tetrahedrons
arranged in a hexagonal network (Adem 2015)6
Figure 2.3: A single octahedral unit and the sheet structure of the octahedral units
(Adem 2015)6
Figure 2.4: Schematic diagrams of the structures of (a) kaolinite, (b) montmorillonite,
(c) illite Adem (2015)
Figure 2.5: Schematic diagram of the soil micro-fabric and macro-fabric system: 1,
domain; 2, cluster; 3, ped; 4, silt grain; 5, micro-pores; and 6, macro-pore (Zhang
2004)
Figure 2.6: Simplified bimodal structure of the clay soil (Zhang 2004)
Figure 2.7: Absorption of water in montmorillonite Adem (2015)9
Figure 2.8: Diffuse double layers Zhang (2004)10
Figure 2.9: Expansive soil movements: (a) swell in all directions when there is no
restriction, (b) soil heave when the lateral movement is restricted Zhang (2004)10
Figure 2.10: The capillary phenomenon contributing to the matric suction (Adem
2015)
Figure 2.11: Relationship between pore radius, matric suction and capillary height
(Adem 2015)
Figure 2.12: Matric suction profile (Fredlund and Rahardjo 1993)15
Figure 2.13: Crack patterns due to edge heave (Lucian, 2006)
Figure 2.14: Residential driveway damaged by expansive soil (Mokhtari 2012)16
Figure 2.15: Structural damage to a house caused by end lift (Mokhtari 2012)17
Figure 2.16: Cracks in exterior walls as a result of upward soil expansion (Mokhtari
2012)
Figure 2.17: Major cracks in exterior walls at doors and windows (Mokhtari 2012) .18
Figure 2.18: Atterberg limits description, volume change and generalized stress- strain
response of expansive soils (Lucian 2006)
Figure 2.19: Identification of swelling potential using Casagrande chart (Lucian 2006)
Figure 2.20: Oedometer Test Results (Nelson 2007)23
Figure 2.21: Determination of swelling pressure using different pressure method (El-
Sobhy et al, 2005)23
Figure 2.22:Determination of swelling pressure using pre-swelled sample method (El-
Sobhy et al, 2005)24
Figure 2.23: Stress paths followed when using the Double Oedometer method (shuai,
1996)
Figure 2.24: Void ratio - logarithm of suction relationship for a soil sample (Adem
2015)
Figure 2.25: Sand cushion/CNS layer (Al-Rawas, 2006)
Figure 2.26: Deep vertical moisture barrier, DVMB (Hardcastle, 2003)
Figure 2.27: Embedded drains around structures (Abdel-Latif 2005)
Figure 2.28: Hydraulic conductivity as a function of soil suction (Adem 2015)47
1 15 are 2.20. If you do no conductivity as a ranction of son suction (Aucin 2013)

Figure 2.29: Soil-water characteristic curve and specific water capacity (Benson	
2007)	
Figure 2.30: Soil Water Characteristic Curve	
Figure 3.1: Cross section in the ground (ABAQUS manual 6.14)	
Figure 3.2: Typical absorption and ex-sorption behavior (ABAQUS manual 6.14)	
Figure 3.3: Porous elastic volumetric behavior (ABAQUS manual 6.14)	
Figure 3.4: Typical cap hardening behavior (ABAQUS manual 6.14)	
Figure 3.5: Particle size distribution curve for Regina clay (Shuai, 1996)	
Figure 3.6: Yield function of Regina clay	
Figure 3.7: Best-fit void ratio versus matric suction curve for Regina clay	
Figure 3.8: Degree of saturation-matric suction relationship for Regina clay	66
Figure 3.9: Saturated permeability-void ratio relationship for Regina clay (Shuai,	
1996)	
Figure 3.10: Relative Permeability for Regina clay	
Figure 3.11: Volumetric strain-Matric suction relationship for Regina clay	67
Figure 3.12: Geometry of the case study (Vu and Fredlund 2002)	
Figure 3.13: Finite element mesh of the case study (Vu and Fredlund 2002)	69
Figure 3.14: Matric suction distribution at the end of step one	69
Figure 3.15: Distribution of saturation at the end of step one	70
Figure 3.16: Heave distribution at the end of step one	70
Figure 3.17: Heave distribution at the end of step two	70
Figure 3.18: Matric suction distribution at the end of step two	71
Figure 3.19: Distribution of saturation at the end of step two	71
Figure 3.20: Comparison between the present results and the results of (Vu and	
Fredlund 2002)	72
Figure 3.21: Geometry of the oedometer model	72
Figure 3.22: Volume change behavior of compacted Regina clay	73
Figure 3.23: Finite element model for the demand wettability of a porous medium	74
Figure 3.24: Absorption/ex-sorption curves for the porous material	75
Figure 3.25: Comparison between the present results and the results of the ABAQ	US
benchmark 6.14	75
Figure 3.26: Finite element mesh (ABAQUS benchmark 6.14)	
Figure 3.27: Capillary action curves in the porous medium (ABAQUS benchmark	
6.14)	
Figure 3.28: Pore Pressure histories	77
Figure 3.29: Vertical displacement histories	77
Figure 3.30: Capillary action curves in the porous medium and initial conditions	
(ABAQUS benchmark 6.14)	79
Figure 3.31: Pore Pressure histories	79
Figure 3.32: Saturation histories	80
Figure 4.1: Geometry of the finite element model	
Figure 4.2: SWCC for different values of the parameter "a"	84
Figure 4.3: Variation of swelling pressure with soil suction for different values of	
	84
Figure 4.4: Distribution of heave for the case (a=1, load 45 kPa- matric suction 10	0
kPa)	85

Figure 4.5: Distribution of heave for the case (a=100, load 45 kPa- matric suction)	
kPa)	
Figure 4.6: Distribution of heave for the case (a=300, load 45 kPa- matric suction kPa)	
Figure 4.7: Distribution of heave for the case (a=600, load 45 kPa- matric suction	on 100
kPa)	
Figure 4.8: Distribution of heave for the case (a=600, load 600 kPa- matric sucti	
1000 kPa)	87
Figure 4.9: Distribution of heave for the case (a=600, load 1000 kPa- matric suc 1000 kPa)	
Figure 4.10: SWCC for different values of the parameter "m"	88
Figure 4.11: Variation of swelling pressure with soil suction for different values	of
"m"	
Figure 4.12: Distribution of heave for the case (m=0.35, load 200 kPa- initial su	
300 kPa)	
Figure 4.13: Distribution of heave for the case (m=0.7, load 200 kPa- initial succession Parameters)	
300 kPa)	
Figure 4.14: Distribution of heave for the case (m=1.4, load 200 kPa- initial succession and particular production)	
300 kPa)	
Figure 4.15: Distribution of heave for the case (m=0.7, load 100 kPa- matric suc	
300 kPa)	
Figure 4.16: Distribution of heave for the case (m=0.7, load 200 kPa- matric suc	
300 kPa)	91
Figure 4.18: Variation of swelling pressure with soil suction for different values "n"	
Figure 4.19: Distribution of heave for the case (n=0.15, load 100 kPa- matric such	
300 kPa)	
Figure 4.20: Distribution of heave for the case (n=0.3, load 100 kPa- matric such	
300 kPa)	
Figure 4.21: Distribution of heave for the case (n=0.6, load 100 kPa- matric such	
300 kPa)	
Figure 4.22: Distribution of heave for the case (n=0.3, load 100 kPa- matric such	
300 kPa)	
Figure 4.23: Distribution of heave for the case (n=0.3, load 200 kPa- matric such	tion
300 kPa)	
Figure 5.1: Geometry of the finite element model used in this analysis	
Figure 5.2: Mechanical boundary conditions for the simulation. (a) view from fr	
(b) view from bottom	
Figure 5.3: Structure load applied in the simulation	
Figure 5.4: Heave variation for different element sizes of mesh	
Figure 5.5: Different paths through the model	
Figure 5.6: Variation of heave at the soil surface along path 1 (surface water rate	
m/s)	
Figure 5.7: Variation of heave at the soil surface along path 3 (surface water rate	
m/s)	

Figure 5.8: Variation of heave at the soil surface along path 1 (surface water rate	4E-8
m/s)	
Figure 5.9: Variation of heave at the soil surface along path 3 (surface water rate	4E-8
m/s)	
Figure 5.10: 3D distribution of the heave (replacement depth 1m)	104
Figure 5.11: 3D distribution of the heave (replacement depth 3m)	104
Figure 5.12: 3D distribution of the heave (replacement depth 4m)	105
Figure 5.13: 3D distribution of the heave (replacement depth 5m)	105
Figure 5.14: Effect of replacement soil depth on differential heave along path 1	
(surface water rate 2E-8m/s)	107
Figure 5.15: Effect of replacement soil depth on differential heave along path 3	
(surface water rate 2E-8 m/s)	108
Figure 5.16: Effect of replacement soil depth on differential heave along path 1	
(surface water rate 4E-8 m/s)	.109
Figure 5.17: Effect of replacement soil depth on differential heave along path 3	
(surface water rate 4E-8 m/s)	
Figure 5.18: 3D heave distribution of Regina clay (replacement depth 4m) (a=30	
kPa, m=0.7, n=0.6)	
Figure 5.19: 3D heave distribution of other clay (replacement depth 4m) (a=30 kg	Pa,
m=0.8, n=1.2)	
Figure 5.20: Effect of replacement soil permeability on heave for 1m replacement	
depth	
Figure 5.21: Effect of replacement soil permeability on heave for 1.5m replacement	
depth	
Figure 5.22: Effect of replacement soil permeability on heave for 3m replacement	
depth	
Figure 5.23: 3D distribution of the heave (replacement depth 1m, permeability 1.	
8 m/s)	
Figure 5.24: 3D distribution of the heave (replacement depth 3m, permeability 1.	
8 m/s)	114
Figure 5.25: Variation of matric suction along path 3 under different values of	115
replacement soil permeability	113
Figure 5.26: 3D distribution of matric suction (replacement thickness 1m,	116
permeability 4.5 E-6 m/s)	110
Figure 5.27: 3D distribution of matric suction (replacement thickness 1m,	116
permeability 1.5 E-8 m/s)	
Figure 5.28: Differential heave between footings 1 and 2 along path 3	
Figure 5.29: Differential heave between footings 2 and 3 along path 3	
Figure 5.30: Variation of differential heave with replacement soil stiffness	
Figure 5.31: Heave variation with time (1m replacement-permeability 1.5E-8 m/s	
Figure 5.32: Heave variation with time (1m replacement-permeability 4.5E-6 m/s	*
Figure 5.33: Heave variation with time (1.5 m replacement-permeability 1.5E-8 n	
Figure 5.34: Heave variation with time (1.5 m replacement-permeability 4.5E-6 n	
Figure 5 25. Heavy variation with time (surface water met 2F 9 mg/s)	
Figure 5.35: Heave variation with time (surface water rate 2E-8 m/s)	
Figure 5.36: Heave variation with time (surface water rate 4E-8 m/s)	124