Endovascular Management of Medically Refractory Intracranial Arterial Stenosis

Thesis

Submitted for Partial Fulfillment of MD Degree in Neurology

By Romany Adly Yousef

M.B.B.Ch. M.Sc., Neuropsychiatry

Under Supervision of **Prof. Dr. Ayman Mohamed Nassef**

Professor of Neurology
Faculty of Medicine- Ain Shams University

Prof. Dr. Eman Mahmoud Awad

Professor of Neurology
Faculty of Medicine - Ain Shams University

Dr. Ahmed Ali El-bassiouny

Assistant Professor of Neurology Faculty of Medicine - Ain Shams University

Dr. Hossam Eldin Mahmoud Afify

Lecturer of Neurology
Faculty of Medicine - Ain Shams University

Dr. Mohamed Ahmed Shafik

Lecturer of Neurology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2019

No words can express my deepest appreciation and profound respect to **Prof. Dr. Ayman Mohamed Nassef,** Professor of Neurology, Ain Shams University, for his continuous guidance and support. He has generously devoted much of his time and his effort for planning and supervision of this study.

Also, my profound gratitude to **Prof. Dr. Eman Mahmoud Awad**, Professor of Neurology, Ain Shams University, for her kind supervision and support. It was a great honor to work under her supervision.

I would like also to thank **Dr. Ahmed Ali El-bassiouny**, Assistant Professor of Neurology, Ain Shams University, for his support, help and constructive criticism during this work.

I would like also to thank **Dr. Hossam Eldin Mahmoud Afify**, Lecturer of Neurology, Ain Shams
University, for his support and help during this work.

Also, my profound gratitude to **Dr. Mohamed Ahmed Shafik,** Lecturer of Neurology, Ain Shams
University, for his great care and support.

Last but not least, I wish to express my love and respect to my lovely wife, my son and my family, for their endless love and care, for their valuable emotional support and continuous encouragement which brought the best out of me. I owe them all every achievement throughout my life.

Finally, my thanks should go to all **the patients** who were the subjects of this work and who cooperated in this research.

List of Contents

Subject Page No.
List of AbbreviationsI
List of FiguresIII
List of TablesIV
Introduction1
Aim of the Work6
Review of Literature
Chapter (1): Pathophysiology of Ischemic Stroke7
Chapter (2): Intracranial Arterial Stenosis24
Chapter (3): Management of Intracranial
Stenosis42
Subjects and Methods71
Results83
Discussion125
Conclusion
Recommendations138
Summary139
References141
Appendices165
Arabic Summary

List of Abbreviations

Abb.	Full term
ACA	Anterior cerebral artery
ACE-I	Angiotensin converting enzyme inhibitors
ACT	Activated clotting time
AE	Adverse events
AHA	American Heart Association
ARBs	Angiotensin receptor blockers
ARIC	Atherosclerosis risk in communities
ATP	Adenine triphosphate
BES	Balloon-expandable stent
BP	Blood pressure
CCA	Cervical carotid artery
CIN	Contrast-induced nephropathy
D. Normal	Diameter of normal
D. Stenosis	Diameter of stenosis
DBP	Diastolic blood pressure
DSA	Digital subtraction angiography
ECA	External carotid artery
ECST	European Carotid Surgery Trial
FLAIR	Fluid-Attenuated Inversion Recovery
GP	Glycoprotein
ICAS	Intracranial arterial stenosis
ICA	Internal carotid artery
ICAD	Intracranial arterial disease
ICH	Intracerebral hemorrhage
IPH	Intra parenchymal hematoma
IQR	Interquartile range
IV	Intravenous
LA	Left atrium
LAA	Left atrial appendage

Abb.	Full term		
MCA	Middle cerebral artery		
MFV	Mean Flow velocity		
MRA	Magnetic resonance angiography		
mRS	Modified Rankin Scale		
NASCET	North American Symptomatic Carotid Endarterectomy Trial		
NIH	National Institutes of Health		
NIHSS	National Institute of Health Stroke Scale		
NPO	Nothing per OS		
PCA	Posterior cerebral artery		
PCCA	Posterior communicating cerebral artery		
Pcom A	Posterior communicating artery		
PFO	Patent foramen ovale		
PT	Prothrombin time		
PTA	Percutaneous transluminal angioplasty		
PTAS	Percutaneous transluminal angioplasty and stent		
PTT	Partial thromboplastin time		
RRR	Relative risk reduction		
SAMMPRIS	Stenting and Aggressive Medical Management for Preventing Recurrent stroke in Intracranial Stenosis		
SES	Self-expandable stent		
SIAS	Symptomatic intracranial arterial stenosis		
TCD	Transcranial Doppler		
TIA	Transient ischemic attack		
TOF	Time-of-flight		
VZV	Varicella zoster virus		
WASID	Warfarin-aspirin symptomatic intracranial disease		

List of Figures

Figure	Title	Page
1	Endothelial dysfunction in atherosclerosis	28
2	Fatty-streak formation in atherosclerosis	28
3	Formation of an advanced, complicated lesion of atherosclerosis	29
4	Unstable fibrous plaques in atherosclerosis	29
5	Axial arterial anatomy of brain by MRA	32
6	Intracranial CT angiogram in a patient with bilateral common carotid occlusion	34
7	A 47-year-old female patient presented with right middle cerebral artery territory stroke	38
8	Lateral carotid angiogram shows that the cervical carotid artery is narrowed but it has a smooth outline, The supraclinoid internal carotid artery is occluded	38
9	Angiographic methods for measurement of carotid stenosis	40
10	WASID methods	41
11	Wingspan stent	60
12	Balloon expandable stent	63
13	Self-expandable stent	63
14	Diagnostic phase of our patient	76
15	Final image after stenting	79
16	MFV of both groups	107
17	Percent of stenosis among both groups	109
18	Follow up after 6 months	111
19	Case presentation (1)	122
20	Case presentation (2)	123
21	Case presentation (3)	124

List of Tables

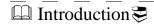
Table	Title	Page
1	Risk factor modification treatment goals	42
2	Age and sex characteristics of all cases	83
3	Distribution and stratification of the risk factors of intervention group	84
4	Radiological findings among intervention group	85
5	MFV before and after intervention	86
6	Percent of stenosis before and after intervention according to Zaho Criteria	87
7	DSA finding among intervention group	88
8	Operative characteristics among intervention group	89
9	Postoperative characteristic data among intervention group	90
10	NIHSS at baseline, three and six months among intervention group	92
11	Change of NIHSS at three and six months among intervention group	92
12	The mean of NIHSS at baseline, three and six months among intervention group	92
13	Follow up after 6 months of interventions	93
14	mRS data at baseline, three and six months	95
15	Change of mRS at three and six months	95
16	Age and sex characteristics of medical cases	96
17	Distribution and stratification of the risk factors of medical group	97
18	Radiological findings among medical group	98
19	MFV before and after treatment	99

Table	Title	Page
20	Percent of stenosis before and after treatment	100
21	NIHSS at baseline, three and six months among medical group	101
22	The mean of NIHSS at baseline, three and six months among medical group	101
23	Change of NIHSS at three and six months among medical group	101
24	Follow up after 6 months of medical group	102
25	mRS data at baseline, three and six months	103
26	Change of mRS at three and six months	103
27	Comparison of demographic data between the two study groups	104
28	Comparison of risk factors between the two study groups	105
29	Radiological data among both groups	105
30	MFV of both groups	106
31	Percent of stenosis among both groups	108
32	Change of percent of stenosis	109
33	Follow up after 6 months in both groups	111
34	NIHSS at baseline, three and six months of both groups	113
35	Change of NIHSS at three and six months of both groups	113
36	MRS at baseline, three and six months of both groups	115
37	MRS changes from the base line value to three months and six months follow up visit in the two study groups	115

Table	Title	Page
38	Percent of stenosis pre and post stenting of intervention group	116
39	Comparison between NIHSS at baseline and after three months after stenting	117
40	Comparison between NIHSS at 3 months and six months after stenting	117
41	Comparison between MRS at baseline and after three months after stenting	118
42	Comparison between MRS at three and six months after stenting	118
43	Percent of stenosis pre and post stenting of medical group	119
44	Comparison between NIHSS at baseline and after three months among medical group	120
45	Comparison between NIHSS at three and six months among medical treatment	120
46	Comparison between MRS at baseline and after three months among medical group	121
47	Comparison between MRS at three and six months among medical group	121

Endovascular Management of Medically Refractory Intracranial Arterial Stenosis Abstract

Background: Atherosclerotic intracranial arterial stenosis (ICAS) is one of the most common causes of stroke worldwide and is associated with a high risk of recurrent stroke. Patients with a recent transient ischemic attack (TIA) or stroke and severe stenosis (70 to 99% of the diameter of a major intracranial artery) are at particularly high risk for recurrent stroke in the territory of the stenotic artery (approximately 23% at 1 year) despite treatment with aspirin and standard management of vascular risk factors. Therefore, alternative therapies are urgently needed for these patients.

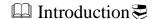

Objective: Our study aimed to determine the efficacy and safety of angioplasty with stenting in medically refractory intracranial arterial stenosis.

Methodology: The current study is a randomized prospective single center study carried out during the period from June 2016 to June 2018 at the Neuroendovascular Unit of El Mataria Teaching Hospital after obtaining an informed consent. Fifty patients were enrolled, randomized 1:1 and underwent twenty five stenting procedures and twenty five take medical treatment. The patients had been recruited from inpatient El Mataria Teaching Hospital admission and outpatient clinics.

Results: Success rate in our study was 96 % where only one patient failed to deployment of stent due to tortuosity of Vessels. Restenosis occurred in one patient after stenting and complete occlusion occurred in one patient also so the percent of restenosis was 8%.

Conclusion: Our study concluded that intracranial arterial stenting and best medical treatment superior in efficacy and safety than best medical treatment without stenting.

Keywords: Endovascular, Intracranial Arterial Stenosis



Introduction

Stroke is a leading cause of death globally. Patients surviving a stroke or transient ischemic attack (TIA) are at an increased risk for subsequent strokes. Without secondary prevention measures, patients after stroke or TIA face an annual risk of 4-16% of developing serious vascular events (Zhang et al., 2015).

Atherosclerotic intracranial arterial stenosis is one of the most common causes of stroke worldwide and is associated with a high risk of recurrent stroke. Patients with a recent transient ischemic attack (TIA) or stroke and severe stenosis (70 to 99% of the diameter of a major intracranial artery) are at high risk for recurrent stroke in the territory of the stenotic artery (approximately 23% at 1 year) despite treatment with aspirin and standard management of vascular risk factors. Therefore, alternative therapies are urgently needed for these patients (Marc et al., 2011).

The pathophysiology of ischemic stroke secondary to intracranial arterial stenosis involves multiple mechanisms. Intracranial arterial stenosis may incite downstream ischemia in a specific arterial territory due to hypoperfusion, in situ thrombosis, artery-to-artery emboli,

perforator vessel occlusion by the atherosclerotic plaque, or combined mechanisms. There is an interrelated and complementary occurrence of hypoperfusion and embolism. Reduced blood perfusion distal to high-grade stenosis limits the ability of emboli from the stenosis to be washed out of the cerebral circulation and therefore may accumulate in the lowest perfusion pressure regions. Investigations using MRI and transcranial Doppler studies have corroborated this hypothesis and have suggested additional mechanisms in which stenosis and embolism act synergistically to produce ischemia (Nestor, 2013).

Despite aggressive medical therapy, the risk of recurrent stroke in patients with symptomatic intracranial arterial disease (ICAD) is as high as 15% per year. In patients with severe stenosis (>70%) and in certain high-risk groups, the risk of recurrent stroke has been reported to be as high as 25% per year (Gonzalez et al., 2013).

Successful management of patients with ICAD requires an intervention that is safe, effective, and has minimal complications. Medical treatment can reduce the risk of ischemic stroke due to thromboembolic events, but it does not reduce the risk of ICAD progression and the associated pathophysiologic components of hypoperfusion and poor collateral circulation (**Taylor et al., 2014**).

Current primary prevention strategies include a combination of life style modification (smoking cessation, dietary intervention, weight loss and exercise). antihypertensive medications, antithrombotic therapy and statins. Recommended secondary prevention includes a combination of medical therapy and revascularization. Tremendous advances were made in cerebral revascularization techniques in recent years, which include percutaneous transluminal angioplasty (PTA) alone and PTA with stenting (PTAS) using balloon-mounted coronary stents (Muthanna & Raghavan, 2012).

Angioplasty has traditionally been used for the treatment of intracranial stenosis, primarily for intracranial stenosis refractory to medical therapy. However, since no stent is specifically designed for intracranial arteries, treatment is usually completed with balloon angioplasty alone (**Takashi et al., 2014**).

Balloon angioplasty has several advantages over bypass surgery in treating the stenotic lesion of the middle cerebral artery (MCA). First, the ability to access to the stenotic lesion and start angioplasty more promptly after neurological deterioration of the patient compared to bypass surgery. Second, endovascular treatment could be performed without induction of general anesthesia and

☐ Introduction ►

considered to be less invasive than open surgery. Third microembolism is thought to be one of the mechanisms of cerebral ischemia in intracranial stenosis, so we consider angioplasty of the lesion may be more essential than bypass surgery in treating the stenotic lesion (**Hideo et al., 2015**).

Despite the low one year stroke rates following intracranial angioplasty, restenosis remains a possible weakness of primary angioplasty. Symptomatic and angiographic restenosis occur at 6 months in approximately 5–30% of patients treated with angioplasty alone. The reangioplasty rate was in excess of 20% in the most recent study in which sub-maximal technique was rigorously employed (**Dumont et al., 2012**).

Stenting was developed in response to the need for better outcomes after angioplasty and was proven to be effective by reducing the occurrence of plaque dislodgement, intimal dissection, elastic recoil of the vessel wall, and early and late restenosis (Farooq et al., 2014).

Stenting has been a popular treatment for intracranial stenosis, particularly with the advent of the Wingspan® Stent System is an endovascular tool. As with the placement of any bare metal stent, intracranial stents require dual antiplatelet therapy during the stent

☐ Introduction ►

endothelialization period. So, treating the areas of intracranial stenosis with angioplasty and stenting. Through improving vessel caliber in the stenotic segment, is more beneficial than medical therapy alone. Theoretically, angioplasty and stenting should increase blood flow and decrease the incidence of watershed infarcts secondary to chronic cerebral ischemia due to hypoperfusion. Early reports of stenting for ICAD showed promise to this end. Bare metal stents, balloon mounted (balloon-expandable) stents, and drugeluting stents have been evaluated for this purpose (Lee et al., 2013).

A joint position statement by major radiology and neuroradiology societies in October 2005, in alignment with the FDA indication, concluded that balloon angioplasty with or without stenting should be considered in patients who had failed medical therapy (**Aakriti et al.**, 2013).