MANAGEMENT OF MODIFIED SURFACE IRRIGATION SYSTEM FOR SOME FIELD CROPS USING AN EXPERT SYSTEM

By

BASMA NASR ABD EL-TAWAB MOHAMED AHMED

B.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(On-Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

MANAGEMENT OF MODIFIED SURFACE IRRIGATION SYSTEM FOR SOME FIELD CROPS USING AN EXPERT SYSTEM

By

BASMA NASR ABD EL-TAWAB MOHAMED AHMED

B.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

Thi	s thesis	s for M.Sc. de	gree	has been appi	coved:	
Dr.	Khaffa	af Abou Elella	a Abo	l Elaziz	•••••	•••••
	Head	Researches	of	Agricultural	Engineering,	Agricultura
	Engine	eering Researc	h Ins	titute, Agricult	tural Research C	enter
Dr.	Ahmee	d Abo El-Has	san A	Abdel-Aziz	•••••	• • • • • • • • • • • • • • • • • • • •
	Prof. o	of Agricultural	Engi	neering, Facul	ty of Agriculture	e, Ain Shams
	Unive	rsity				
Dr.	Abdel	-Ghany Moha	ımed	El-Gindy		
	Prof. E	Emeritus of Ag	gricul	tural Engineeri	ng, Faculty of A	griculture,
	Ain Sh	nams Universi	tv			

Date of Examination: 23 / 12 / 2018

MANAGEMENT OF MODIFIED SURFACE IRRIGATION SYSTEM FOR SOME FIELD CROPS USING AN EXPERT SYSTEM

BASMA NASR ABD EL-TAWAB MOHAMED AHMED

B.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

Under Supervision of:

Dr. Abdel-Ghany Mohamed El-Gindy

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (principal Supervisor).

Dr. Yasser Ezzat Arafa

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

ACKNOWLEDGMENT

I would like to express my sincere appreciation to principal supervisor **Dr. Abdel-Ghany M. El-Gindy**, prof of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for his support, Valuable Suggestions and frequent discussions throughout the study.

I would like to express my greatest appreciation and deepest gratitude to **Dr. Yasser E.Arafa**, Prof of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for his scientific help and supervision.

I would wish to express my deep thanks and sincere appreciation to The Academy of Scientific Research and Technology (ASRT) and Scientists for Next Generation program (SNG) for funding this research.

My worm thanks go to the staff members of the department of Agricultural engineering, Fac. of Agric., Ain Shams University

Finally, many thanks to **mother**, **father** and **siblings** for their encouragement, support and attention.

ABSTRACT

Basma Nasr Abd El-Tawab Mohamed: Management of Modified Surface Irrigation System for Some Field Crops Using an Expert System. Unpublished M.Sc. Thesis, Department of Agricultural Engineering Faculty of Agriculture, Ain Shams University, 2019.

It is very difficult to find an expert at the desired time and place to give guidance about irrigation scheduling or good management of water and irrigation system. In this study, this problem was tried to be solved by designing, verifying and validating an expert system for a modified surface irrigation system. A rule-based program named as MSIS-ES (Modified Surface Irrigation System Expert System) was coded and complied using C#.net programing language. The expert system was designed to support users with information about irrigation scheduling (irrigation operating time and irrigation interval) and the gated pipes as one of surface irrigation modification tools (gate opening/expansion ratios). The developed expert system database is obtained from Allen et al. (1998) FAO irrigation and drainage paper No.56 for lengths of crop development stages for various planting periods and climatic regions, single crop coefficient (Kc) for non-stressed well managed crops in subhumid climates, ranges of maximum effective rooting depth and soil water depletion fraction for no stress for some field crops. Results obtained by the program were compared with a personally designed spreadsheets and hand calculation as verification step. Two different experiments were held to validate the purpose of the program. The first one was a field experiment to validate the irrigation scheduling part by cultivating a three field crops (Grain maize, Sweet maize and Sorghum) to make a comparison between the crop yield and water productivity after applying the program's and the farmer's scheduling. The second one is to make a comparison between the fully opened gates situation and when the resulted gate opening/expansion ratios were applied. The First experiment results indicated that the crop yield increased by 19.08 %, 10.49% and

11.66% after using the MSIS-ES rule based program for grain maize, sweet maize and sorghum, respectively, and also, the crop water productivity increased by 20.24%, 47.87% and 46.43% for grain maize, sweet maize and sorghum, respectively. The second experiment results indicated that there were slight variations between outlets flow rate after using the expert system except the last four outlets, the flow rates were having higher values because of the superimposed pressure near the closed end.

Keywords: Expert systems, Irrigation scheduling, Gated pipes, Modified surface irrigation system, Grain maize, Sweet maize and Sorghum.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF PLATES	VIII
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1 Expert System (ES)Definitions	3
2.2 Components of Expert systems	4
2.3 Advantages of expert systems	7
2.4 Expert system's verification and validation	8
2.5 Need of expert systems in agriculture	9
2.6 Applications of expert system in on-farm irrigation	10
2.7 Irrigation system:	13
MATERIAL AND METHODS	18
3.1 Building the MSIS-ES Program	18
3.1.1 User Interface	18
3.1.2 The MSIS-ES Structure	18
3.1.2.1 Formalization	20
3.1.2.2 Conceptualization	23
3.1.2.3 Data base	23
3.2 Description of the Program	24
3.2.1 The opening screen	24
3.2.2 The new project naming screen	24
3.2.3 The crop data screen	25
3.2.4 Reference evapotranspiration (Eto) data screen	27
3.2.5 Location data screen	28
3.2.6 Irrigation system data screen	29
3.2.7 The help message	30
3.2.8 The results screen	31
3.3 Processing and Rules	32

	Page
3.3.1 Daily crop coefficient estimation	32
3.3.2 Water requirement calculation:	33
3.3.3 Calculating the next irrigation date using matrix 1	34
3.3.4 Calculation of gates expansion ratios using matrix 2	36
3.4 Verification of the Developed Expert System	37
3.5 Validation of the Developed Expert System	37
3.5.1 Description of the field experiment	37
3.5.1.1 Cultivated crops	37
3.5.1.2 Irrigation system experimental layout	38
3.5.1.3 Soil properties, irrigation water and drainage water	
analysis	40
3.5.1.4 Meteorological data	41
3.5.1.5 Actual root depth measuring method	42
3.5.1.6 Crop yield:	42
3.5.1.7 Crop water productivity (CWP):	42
3.5.2 Description of the laboratory experiment:	43
RESULTS AND DISCUSSION	44
4.1 Verification and Validation Process of The MSIS.ES	
Rule-based Expert system	44
4.1.1 Verification process	44
4.1.1.1 The applied example for the developed expert system	
verification process	44
4.1.1.2 Hand calculation steps	46
4.1.1.2.1 The first step	46
4.1.1.2.2 The second step	53
4.1.2 Validation process	60
4.1.2.1 Validation process of the irrigation scheduling	60
4.1.2.1.1 The field experiment	60
4.1.2.1.2 Crop yield	64
4.1.2.1.3 The crop water productivity (CWP)	68
4.1.2.1.4 The laboratory experiment	71

	Page
SUMMARY AND CONCLUSION	74
REFERENCES	77
ARARIC SUMMARY	

LIST OF TABLES

Table No.		Page
Table 1	Single crop coefficient (kc) database for non-stressed	
	and will managed crops in sub humid climates (Allen	
	et al., 1998).	16
Table 2	Maximum effective root depths and depletion	
	fractionsfor some field crops (Allen et al., 1998).	17
Table 3	Crop development stages for various planting periods	
	and climatic regions (days) for some field crops	
	(Allen et al., 1998).	17
Table 4	Some chemical analysis of the irrigation water at the	
	experimental site.	40
Table 5	Some chemical analysis of the soil at the	
	experimental site.	40
Table 6	Some soil physical properties of the soil at the	
	experimental site.	41
Table 7	The electrical conductivity of drainage water.	41
Table 8	Reference evapotranspiration values for Shalakan,	
	Kalubia(CLAC, 2015-2016).	42
Table 9	The inputted data to the MSIS-ES rule-base expert	
	system for the verification process.	45
Table 10	Measured rooting depth and current irrigation date	
	inputted data at every irrigation for grain maize,	
	sweet maize and sorghum	61
Table 11	Inputted data to the MSIS-ES during the field	
	experiment	62
Table 12	Farmer's applied irrigation operating times and	
	irrigation dates for grain maize, sweet maize and	
	sorghum	63
Table 13	Thenext irrigation date and current irrigation	
	operating times output data at the irrigation process	
	of grain maize, sweet maize and sorghum.	64

Table No.		Page
Table 14	The output data for the gates expansion /opening	
	ratios along the pipeline from gate number (1) to gate	
	number (26)	72

LIST OF FIGURES

Fig. No.		Page
Fig. 1	Components and the development process of an	
	Expert system (Iyer, 2005)	5
Fig. 2	Component of an expert system (Luger, 2005)	6
Fig. 3	Schematic diagram for the developed expert	
	system.	19
Fig. 4	the generalized crop coefficient curve (Allen et	
	al., 1998).	33
Fig. 5	Flow chart describes the internal loop used in	
	calculating the next irrigation date within the	
	MSIS-ES expert system.	36
Fig. 6	Layout of the field experiment.	39
Fig. 7	Personal designed spread sheet showing the	
	construction of Matrix 2.	50
Fig. 8	Calculation of (Hf) or column (4) in matrix (2)	
	using the MSIS-ES program and a designed	
	spread sheet.	52
Fig. 9	Calculation of (H) or column (5) in matrix (2)	
	using the MSISES program and a designed spread	
 10	sheet.	52
Fig. 10	Calculation of (outlet area) or column (6) in	
	matrix (2) using the MSIS-ES program and a	5 0
D: 11	designed spread sheet.	53
Fig. 11	Personal designed spread sheet showing the	<i>5 1</i>
Fig. 12	construction of Matrix 1. The grain maize yield when using the MSIS ES	54
Fig. 12	The grain maize yield when using the MSIS-ES program and farmer scheduling.	66
Fig. 13	The sweet maize yield when using the MSIS-ES	UU
11g. 13	program and farmer scheduling.	66
Fig. 14	The sorghum's 1 st crop yield when using the	67
1 16. 1T	The sorgham of crop yield when doing the	07

Fig. No.		Page
	MSIS-ES program and farmer scheduling.	
Fig. 15	The sorghum's 2 nd crop yield when using the	
	MSIS-ES program and farmer scheduling.	67
Fig. 16	The sorghum's yield for the whole season when	
	using the MSIS-ES program and farmer	
	scheduling.	68
Fig. 17	The crop water productivity for the grain maize	
	when using the MSIS-ES program and farmer	
	scheduling.	69
Fig. 18	The crop water productivity for the sweet maize	
	when using the MSIS-ES program and farmer	
	scheduling.	70
Fig. 19	The crop water productivity for the sorghum when	
	using the MSIS-ES program and farmer	
	scheduling.	70
Fig. 20	The outlets flow rates along the pipe line when all	
	gates are fully opened.	72
Fig. 21	The orifices discharge along the pipeline after	
	application of gate opening ratios of the MSIS-ES.	73

VIII

LIST OF PLATES

Plate No.		Page
Plate 1	The opening screen of the MSIS-ES program	24
Plate 2	The new project naming screen of the MSIS-ES	
	program	25
Plate 3	Crop data screen of the MSIS-ES program.	26
Plate 4	Development stages lengths database screen for	
	sweet maize.	27
Plate 5	Crop coefficient database screen forsweet maize.	27
Plate 6	Reference evapotranspiration input screen of the	
	MSIS-ES program.	28
Plate 7	Location data screen of the MSIS-ES program.	29
Plate 8	Irrigation system data screen of the MSIS-ES	
	program.	30
Plate 9	The help message.	31
Plate 10	TheMSIS-ES rule base expert system results screen.	32
Plate 11	TheMSIS-ES rule basedprogramme results screen for	
	the verification process	51
Plate 12	Irrigation system input data screen for the MSISES	
	validation.	71

INTRODUCTION

A huge concern has to be given to the agricultural field especially with water shortage problem. This has led to find new solutions by using new technologies in the irrigation. In order to apply those technologies, the agricultural guidance service has to be improved and enhanced with the agricultural expert systems.

Expert systems are a computer programs that can imitate human experts intelligence by giving advices and providing guidance on a specific domain such as medicine, engineering, agriculture, etc. and it is expressed as one of artificial inelegance (AI) applications that can solve problems by imitating human reasoning. It also can be defined as software that uses a knowledge base of human expertise for problem solving or clarifies uncertainties were normally one or more human expert needs to be consulted.

Expert system can help people to make decisions about a specific field more timely and effectively than the human expert. It is less expensive than consulting the human expert displays unbiased judgements and considers all possible alternatives. The expert system applications in agricultural domain were developed to give high technology for higher profitability and to preserve resources.

Irrigation water management have many difficulties and the majority of farmers don't have the desired level of experience and make decisions using incomplete information in this particular field, so, using the expert systems is considered to be the best solution due to its availability anywhere and all the time and its ability of giving guidance about irrigation water scheduling, calculating the right irrigation requirement and operating times based on data entered from the user and/or stored in its knowledge base and providing information about the good management of the used irrigation system to give the heist possible efficiency.