

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

A New GIS Technique for Runoff Modeling and Depression Storage Assessment

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING

Submitted By

Eng. Morad Hamid Abdeldayem Abdelsalheen

B.Sc. in Civil Engineering - Water and Hydraulic Structures – 2008 Faculty of Engineering - Ain Shams University M.Sc. in Civil Engineering Irrigation and Hydraulics - 2014 Faculty of Engineering - Ain Shams University

Supervised by

Prof. Dr. Ahmed Ali Ali Hassan

Professor of Environmental Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Prof. Dr. Ashraf M. Elmoustafa

Professor of Engineering Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Cairo – Egypt 2019

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

EXAMINERS COMMITTEE

Name: Eng. Morad Hamid Abdeldayem Abdelsalheen

Thesis: A New GIS Technique for Runoff Modeling and Depression

Storage Assessment

Degree: Doctor of Philosophy in Civil Engineering

Name and Affiliation Signature

Prof.Dr. Osama Khairy Saleh Eraky

Professor of Hydraulics Faculty of Engineering Zagazig University

Prof. Dr. Hoda Kamal Fouad Soussa

Professor of Water Resources Engineering Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Prof. Dr. Ahmed Ali Ali Hassan

Professor of Environmental Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Prof. Dr. Ashraf M. Elmoustafa

Professor of Engineering Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Date: / / 2019

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

SUPERVISOR COMMITTEE

Name: Eng. Morad Hamid Abdeldayem Abdelsalheen

Thesis: A New GIS Technique for Runoff Modeling and Depression

Storage Assessment.

Degree: Doctor of Philosophy in Civil Engineering

Name and Affiliation	Signature
Prof. Dr. Ahmed Ali Ali Hassan	
Professor of Environmental Hydrology	
Irrigation and Hydraulics Department	
Faculty of Engineering	
Ain-Shams University	
Prof. Dr. Ashraf M. Elmoustafa	
Professor of Engineering Hydrology	
Irrigation and Hydraulics Department	
Faculty of Engineering	
Ain-Shams University	

Research Date: / / 2019

Postgraduate Studies

Authorization Stamp: The thesis is authorized at: / / 2019

College Board Approval

/ / 2019

University Board Approval
/ / 2019

Curriculum Vitae

Name Morad Hamid Abdeldayem Abdelsalheen

Date of Birth 26, September, 1986

Place of Birth Taief, Kingdom of Saudi Arabia

Nationality Egyptian

University Degrees B.Sc. in Civil Engineering, Faculty of Engineering,

Ain Shams University, 2008

M.Sc. in Civil Engineering, Faculty of Engineering,

Ain Shams University, 2014

Current Position Lecturer Assistant at Hydraulics and Irrigation

Department, Faculty of Engineering, Ain Shams

University

Statement

This thesis is submitted to Ain Shams University for the degree of Ph.D. in

Civil Engineering (Irrigation and Hydraulics).

The work included in this thesis was carried out by the author at the

Department of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams

University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at

any other University or Institution.

Name: Morad Hamid Abdeldayem Abdelsalheen

Signature:

Date: / / 2019

IV

Acknowledgment

First and foremost, thanks to GOD

I wish to express my deepest gratitude and appreciation to **Professor Dr. Ahmed Ali Ali Hassan**, Professor of Environmental Hydrology, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University for his kind supervision, fruitful comments and valuable advices.

My grateful appreciation is also extended to **Professor Dr. Ashraf M. Elmoustafa**, Professor of Engineering Hydrology, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University for his patience, help, guidance, useful suggestions, dedication and encouragement throughout this work till its completion which is gratefully acknowledged and sincerely appreciated.

I wish to express my thanks to all the staff members of the Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University for their support and encouragement.

Last but not least, I'd like to thank my Wife, my Kids and Family for their prayers, patience, encouragement and support throughout all the difficult and hard times.

Abstract

Digital elevation model (DEM) is usually used for hydrological applications and have been broadly applied to analyze hydro-morphological characteristics of watersheds such as flow direction, flow accumulation, stream channel network.

Rectification of depressions and flat areas within DEM is needed before determination of flow direction of each grid in DEM. This is a problem in hydrological modeling, as mostly all DEMs have sink and flat grids, both can be actual or artificial and if they are kept unprocessed, flow paths will not be correctly simulated. Hence, a set of algorithms are available for correcting sink and flat grids in DEM in order to solve the problem of flat areas and depressions.

In this research, a semi-distributed grid-based GIS model has been developed for watershed delineation on a pixel scale. The model purpose is to develop a more accurately estimate of the initial abstractions due to the presence of depressions in a watershed over the duration of the adopted storm event. The developed model has been used to evaluate the effect of depressions on the total surface runoff volumes and peak discharges. This could be significantly used to reduce the sizing of the protection hydraulic structures. The model simulates hydrological processes of precipitation, surface runoff, and depression storage while water balance is maintained for each pixel. The total surface runoff is produced using (SCS – CN) method that accounts for land use, soil cover and soil type.

Additionally, the impact of the presence of depressions on runoff has been assessed from three points of view; outlet location, runoff volume, and peak

discharge downstream the depression. This has been carried out through three approaches; the first approach neglects the presence of depression, the second approach considers the depression in study but assuming one outlet with width equal to one cell size and the third approach is the same as the second approach but with multi-outlets with different widths and levels according to the nature of depression perimeter. The third approach gives more realistic values for runoff volume and peak discharge as it accounts for the volume of water stored in depression and represents the outflow from depression in more accurate way.

Keywords: DEM, GIS, Pixel, Peak Discharge, Runoff Volume and Depression

Table of Contents

Table of Co	ontentsVIII
List of Tab	lesXII
List of Figu	uresXIII
List of Abb	previationsXVI
List of Syn	nbolsXVII
Chapter 1	INTRODUCTION1
1.1 Pre	face1
1.2 Pro	blem Definition and Research Gab2
1.3 Res	search Objectives3
1.4 The	esis Structure4
Chapter 2	THEORETICAL BACK GROUND AND LITERATURE
REVIEW	5
2.1 Ma	in Processes Dealing with Depressions5
2.1.1	Fill Sink / Depression5
2.1.2	Flow Direction
2.1.3	Flow Accumulation9
2.1.4	Area Upstream Grid9
2.1.5	Stream Link Grid11
2.1.6	Drainage Line Processing12
2.1.7	Pour Point12
2.1.8	Snap to Pour Point12

2.1.9	Watershed Grid	13
2.1.10	0 Making Profile Graph	14
2.2 De	efining the Depression	15
2.2.1	Detecting Depressions from Raster	15
2.2.2	Detecting Depression from Vector	15
2.3 De	epression/Sink Types	16
2.4 Ro	outing Techniques	16
2.4.1	Hydraulic routing	17
2.4.2	Hydrologic Routing	17
2.5 Ro	outing Using HEC-HMS	18
2.5.1	Reservoir Element	19
2.5.2	Storage Method	19
2.5.3	Initial Condition	19
2.5.4	Outflow Structure	20
2.6 Av	vailable Models Considering Depresssions	20
2.6.1	WetSpa Model	20
2.6.2	SWMM Model	22
2.6.3	MARIAM Model	23
Chapter 3	MODEL DEVELOPMENT	25
3.1 Pro	eface	25
3.2 Mo	odeling in GIS Environment	25
3.2.1	Model Builder	27
3.2.2	Python	28

3.2.3	ArcPy	28
3.3 Traditiona	l Approaches Drawbacks	29
3.4 The (DGD	DEM) Development	29
3.4.1	Model Assumptions	29
3.4.2	Model Inputs	30
3.4.3	Model Description	32
Chapter 4 DGDE	EM APPLICATIONS	37
4.1 Preface		37
4.2 Application	on to Flat-Terrain Area (North Coast Model)	37
4.2.1	Area Description	37
4.2.2	Results and Analysis	40
4.3 Application	on to Mountainous-Terrain (South Sinai Model)	45
4.3.1	Area Description	45
4.3.2	Results and Analysis	48
Chapter 5 ASSE	SSMENT OF DEPRESSION ROUTING	52
5.1 Preface		52
5.2 Runoff thr	ough Depressions	52
5.3 Depression	n Routing	53
5.4 Outlet Sim	nulation	54
5.4.1	First Approach	55
5.4.2	Second Approach	56
5.4.3	Third Approach	57
5.5 Depression	n Morphology	58

5.	5.1	Perimeter Profile	. 58
5.	5.2	Volume Rating Curve and Surface Area	. 59
5.6	Simulation	Storm Description	. 60
5.7	Simulation	Results	.61
5.	7.1	Runoff Volume	.61
5.	7.2	Peak Discharge	.61
Chapte	er 6 CONC	LUSIONS AND RECOMMENDATIONS	. 67
6.1	Summary		. 67
6.2	Conclusion	ns	. 67
6.	2.1	Evaluation of Developed Model (DGDEM)	. 68
6.	2.2	Assessment of Depression Impact	. 68
6.3	Recommen	ndation	. 69
REFEF	RENCES		. 70
APPEN	NDIX A		75

List of Tables

Table 4-1 Comparison between results from delineation using	traditional
approach and DGDEM	43
Table 4-2 Comparison between results from delineation using	traditional
approach and DGDEM	50
Table 5-1 Catchments' Morphological Parameters	55
Table 5-2 Length at each level of Outer perimeter of Depression	59
Table 5-3 Runoff Volumes for three approaches	61
Table 5-4 Flood Attenuation Ratio and Peak Discharge f	for Three
Approaches	62

List of Figures

Figure 2-1 Sink before and after running fill sink [1]6
Figure 2-2 Direction Coding [6]
Figure 2-3 Flow Direction to Flow Accumulation [1]9
Figure 2-4 Example of Flow Accumulation
Figure 2-5 Example of Area Upstream Grid
Figure 2-6 Example of stream link grid
Figure 2-7 Snap Pour Point Function in ArcGIS
Figure 2-8 Example on Watershed Grid
Figure 2-9 Stack Profile (3D Analyst) [1]
Figure 2-10 Routing effects on Runoff hydrograph [20]17
Figure 3-1 Model Builder Elements
Figure 3-2 DGDEM31
Figure 3-3 DGDEM Flowchart
Figure 3-4 Example of Depressions Allocation
Figure 3-5 Example of Depressions Drainage Lines Intersection34
Figure 3-6 Example of Catchments Contributing to Depressions34
Figure 3-7 Example of DEM Free of Depressions and their Contributing
Catchments
Figure 4-1 Location of Study Area No. 1
Figure 4-2 (DEM) of The Study Area No.1 with Resolution of 90m39
Figure 4-3 CN Grid Map for Egypt, [38]39
Figure 4-4 Max. Daily Rainfall Depth (1961-2016) for the Study Area No.1,
[41]40
Figure 4-5 Catchments Generated using Traditional Approach in Study Area
No.1

Figure 4-6 Catchments Generated Using DGDEM in Study Area No.1 $\! \! \! \! \! .$	42
Figure 4-7 Comparision between Catchments' Areas Using The	Γwo
Different Approaches in Study Area No.1	43
Figure 4-8 Comparision between Catchments' Peak Discharges Using	The
Two Different Approaches in Study Area No.1	44
Figure 4-9 Comparision between Catchments' Runoff Volumes Using	The
Two Different Approaches in Study Area No.1	44
Figure 4-10 Location of Study Area No.2	45
Figure 4-11 (DEM) of The Study Area No.2 with Resolution of 90m	47
Figure 4-12 CN Grid Map for Egypt [38]	47
Figure 4-13 Max. Daily Rainfall Depth (1982-2015) of Sharm Elshe	eikh
Station [42]	48
Figure 4-14 Catchments Generated using Traditional Approach in St	udy
Area No.2	49
Figure 4-15 Catchments Generated Using DGDEM in Study Area No.2	49
Figure 4-16 Comparision between Catchments' Areas Using The	Γwo
Different Approaches in Study Area No.2	50
Figure 4-17 Comparision between Catchments' Peak Discharges Using	The
Two Different Approaches in Study Area No.2	51
Figure 4-18 Comparision between Catchments' Runoff Volumes Using	The
Two Different Approaches in Study Area No.2	51
Figure 5-1 Catchments Definition	55
Figure 5-2 Measuring Point Location	56
Figure 5-3 Outlet Location	57
Figure 5-4 Outlets Locations	58
Figure 5-5 Depression Perimeter Profile	59
Figure 5-6 Volume Rating Curve and Surface area of Depression	60
Figure 5-7 Out Flow Versus Time for First Approach	64