

Ain Shams University
Faculty of Engineering
Engineering Physics and Mathematics Department

Signal Processing for Microscale Optical Spectrometers

A Thesis

Submitted in partial fulfillment of the requirements of a Master of Science degree in Engineering Mathematics

Submitted by:

Islam Samir Seleman El-Sayd

B.Sc. of Electrical Engineering (Electronics and Communications Department)
Ain Shams University, 2013.

Supervised by:

Prof. Dr. Niveen Mohamed Khalil Badra Prof. Dr. Diaa Abdel Maguid Khalil Dr. Yasser Mohammed Sabry Gad

Faculty of Engineering – Ain Shams University Department of Engineering Physics and Mathematics

Thesis Title: "Signal Processing for Microsacle Optical Spectromters"

Submitted by: Islam Samir Seleman El-Sayd **Degree: Master of Science of Engineering Mathematics Examiners' Committee** Prof.Dr. Amr Mohamed Shaarawi American University Faculty of Engineering Dept of Physics. Prof. Dr. Reda Amin Al-Barqouqi Ain Shams University Faculty of Engineering Dept of Physics and Mathematics. Prof. Dr. Diaa Abdel Maguid Khalil Ain Shams University Faculty of Engineering Dept of Electronics and Communications. **Prof.Dr. Niveen Mohamed Badra** Ain Shams University Faculty of Engineering Dept of Physics and Mathematics.

Date: 2/4 /2019

Statement

This thesis is submitted as partial fulfillment of M.Sc. degree in Engi-

neering Mathematics, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it

has been submitted for a degree or qualification at any other scientific en-

tity.

Name: Islam Samir Seleman El-Sayd

Date: 2/4/2019

Curriculum Vitae

Name: Islam Samir Seleman El-Sayd

Date of Birth: 10/05/1991

Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University: Ain Shams University

Date of Degree: June 2013

ACKNOWLEDGEMENT

All praise is due to Allah, Most Merciful, and the Lord of the Worlds, Who taught man

what he knew. I would like to thank God Almighty for bestowing upon me the chance,

strength and ability to complete this work.

My sincere gratitude goes to my parents, my wife, and the rest of my family. This work

would not have been possible without their continuous encouragement, patience, support

and assistance.

My words can't express my gratitude to Prof. Diaa Khalil, who introduced me to the world

of optics and guided me through my research and career to the best.. I'd like also to ex-

press my deep thanks and gratitude to Prof. Dr. Niveen Mohamed Badra for her support,

guidance, encouragement to complete this work. I'd like also to thank Dr. Yasser Sabry for

his continuous help, discussions and flexibility to accept my ideas and refine them to reach

better results.

I would like to thank Mazen Erfan, Alaa Fathy, Yomna Eltagoury, and Waleed El-Sayd for

their cooperation and help in this work.

Islam Samir

Cairo, Egypt

April, 2019

i

THESIS SUMMARY

This thesis aims to use the MEMS spectrometers and enhance the resolution of these spectrometers, but the resolution of these spectrometers is limited, as higher spectral resolution requires increasing the maximum optical path difference, which depends on the maximum displacement of the scanning mirror. The maximum displacement in miniaturized spectrometers is limited and; consequently the resolution. Our objectives in this thesis are divided into two directions. Firstly, is to propose and implement a transformation algorithm to get a proper spectrum using the compact architecture of the cascaded Fabry-Perot FTIR spectrometer. This is to make use of the merit of having smaller size and simple manufacturing process. The second direction is to investigate the use of signal processing algorithms of AR model to enhance the resolution of the FTIR spectrometers without increasing the size of the FT-IR spectrometer and apply this extrapolation model to enhance the resolution of practical measurements.

The thesis is organized into five chapters as listed below:

<u>Chapter 1:</u> Brief introduction of the objective, contributions and thesis outlines are introduced.

<u>Chapter 2:</u> MEMS FT-IR spectrometer is studied, and Literature review on resolution enhancement techniques and also literature survey on different types of integral equations and the different analytical and numerical methods for solving these equations are presented.

<u>Chapter 3:</u> The architecture of the cascaded FPI is described, and then a mathematical algorithm is derived to find the spectrum from the interferogram. The accuracy of the algorithm is examined by calculating the error between the original spectrum and the reconstructed spectrum. The practicality of the algorithm is tested by adding noise to the spectrum. The reconstruction resolution is extracted. Then a numerical solution based on the trapezoidal method is implemented and compared to the proposed algorithm.

<u>Chapter 4:</u> The super resolution technique of the Auto-regressive (AR) is used to enhance the resolution of the MEMS FTIR spectrometer based on the Michelson interferometer. A theoretical investigation on the capabilities and limitation of the AR algorithm is conducted. Finally, the model is applied to enhance the resolution of practical measurements.

Chapter 5: The thesis work is concluded, and future work suggestions are proposed.

Key words:

Fabry-Perot interferometer, Micro-electro-mechanical systems (MEMS) technology, Autoregressive (AR) model, Fourier transforms spectroscopy, Cascaded Fabry-Perot interferometer, Resolution enhancement.

CONTENTS

ACKNOWLEDGEMENT
THESIS SUMMARYIII
CONTENTSV
LIST OF FIGURESIX
LIST OF SYMBOLSXIII
ABBREVIATIONSXV
1 INTRODUCTION
1.1 Introduction
1.2 Objective
1.3 Main Contributions
1.4 Thesis Outlines
2 SUPER RESOLUTION TECHNIQUES21
2.1 MEMS FT-IR Spectrometers
2.1.1 Theory of operation2
2.1.2 Spectrum Reconstruction
2.1.3 Resolution
2.2 Survey on super-resolution techniques
2.2.1 Compressive sensing algorithm2
2.2.2 Autoregressive model theory2
a) Estimating AR coefficients3
b) Maximum entropy spectral estimation3

		2.2.3	Other techniques	37
	2.3	SURVEY O	N INTEGRAL EQUATIONS	40
3	CASCA	DED FAB	RY PEROT INTERFEROMETER	52
	3.1	Introduc	CTION	52
	3.2	FABRY-PE	ROT INTERFEROMETER	53
	3.3	RECONST	RUCTION ALGORITHM	55
	3.4	Numeric	al Results	60
		3.4.1	Reconstruction Accuracy	60
		3.4.2	Effect of noise on Reconstruction	66
		3.4.3	Reconstruction Resolution	67
	3.5	RECONST	RUCTION USING THE TRAPEZOIDAL METHOD	70
		3.5.1	Numerical Results	71
	3.6	Conclusi	ION	74
4	RESOL	UTION EI	NHANCEMENT USING AUTO-REGRESSIVE MODEL	75
	4.1	Introduc	CTION	75
	4.2	Auto Red	GRESSIVE ALGORITHM	78
	4.3	THEORETI	CAL RESULTS	81
		4.3.1	Intervals between successive lines	81
		4.3.2	SNR effect on the reconstruction resolution	83
		4.3.3	Singular values	87
		4.3.4	Reconstructed spectrum SNR	89
	4.4	PRACTICA	L MEASUREMENTS	89
	4.5	Conclus	ION	95
5	CONCL	JLSION A	ND FUTURE WORK	96

5.1 CONCL	USIONS	96
5.1 FUTUR	RE WORK	97
AUTHOR'S PUBI	LICATIONS	99
APPENDIX 1		101
MATLAB P	PROGRAM FOR RECONSTRUCTING SPECTRUM MEASURED USING	G CASCADED FABRY-
PEROT INTERFER	ROMETER	101
BIBLIOGRAPHY		103