

Comparitive Study Between Ultrasound Guided Rectus Sheath Block versus Local Wound Infiltration for Post-Operative Analgesia in Patients Undergoing Midline Exploratory Surgeries.

Thesis

Submitted for Partial Fulfillment of Master Degree of Aneasthesia

By

Ahmed Abdelrahman Abdelaleem Abdelhalim

M.B.B.CH Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Hoda Omar Mahmoud

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Assist.Prof.Dr.Ahmed Mohamed El-Hennawy

Assistant Professor of Anesthesia, Intensive care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Mohamed Mourad Mohsen Mohamed Ali

Lecturer of Anesthesia, Intensive care and Pain Management Faculty of Medicine - Ain Shams University

> Department of Anaesthiology Faculty of Medicine-Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Hoda Omar Mahmoud**, Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Dr. Ahmed Mohamed El-Wennawy, Assistant Professor of Anesthesia, Intensive care and Pain Management Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohamed Mourad**Mohsen Mohamed Ali, Lecturer of Anesthesia, Intensive care

and Pain Management Faculty of Medicine - Ain Shams University,

for his great help, active participation and guidance.

Ahmed Abdelrahman Abdelaleem Abdelhalim

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Introduction	1
Aim of the Work	10
Review of Literature	
 Anatomy of Anterior Abdominal Wall And It's Supply 	
Pain Pathway	
Pharmacology of Local Anesthetics	
Performing the Rectus Sheath Block	
Patients and Methods	
Results	63
Discussion	78
Summary	84
Conclusion	
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
	a	
Table (1):	Systemic responses to surgery	25
Table (2):	Principal hormonal responses to surg	gery25
Table (3):	Types of Primary Sensory Afferent F	ibers31
Table (4):	Comparison between two groups ac	_
	to demographic data	
Table (5):	Comparison between two groups as heart rate at Rest	
Table (6):	Comparison between two groups act to systolic blood pressure at Rest	_
Table (7):	Comparison between two groups act to diastolic blood pressure at Rest	_
Table (8):	Comparison between two groups act to VAS at Rest	
Table (9):	Comparison between two groups act to rescue analgesia (pethedine 1mg	ccording g/kg) at
T 11 (10)	Rest.	
Table (10):	Comparison between two groups act to heart rate at mobilization	_
Table (11):	Comparison between two groups act to systolic blood pressure at mobiliza	~
Table (12):	Comparison between two groups as diastolic blood pressure at mobilizati	regard
Table (13):	Comparison between two groups as	

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Clinical anatomy of the abdominal wa Abdominal wall innervation (su layer)	perficial
Figure (3):	Shows NRS, VRS and VAS a assessment scores	ıs pain
Figure (4):	Basic local anesthetic structure	41
Figure (5):	Rectus muscle view under ultrasound.	51
Figure (6):	Surface anatomy rectus sheath mus	cles52
Figure (7):	Needle view under ultrasound	53
Figure (8):	Surface land mark	54
Figure (9):	Visual Analog Scale (VAS)	60
Figure (10):	Graph shows comparison betwee groups according to age (years)	
Figure (11):	Graph shows comparison betwee groups according to BMI.	
Figure (12):	Graph shows comparison betwee groups as regard the heart rate at R	
Figure (13):	Graph shows comparison betwee groups as regard systolic blood presents.	ssure at
Figure (14):	Graph shows comparison betwee groups according to diastolic blood pat Rest	ressure
Figure (15):	Graph shows comparison betwee groups according to VAS at Rest	
Figure (16):	Graph shows comparison between groups as regard Rescue as (pethedine 1mg/kg) at Rest	nalgesic

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (17):	Graph shows comparison groups according to he mobilization	eart rate of
Figure (18):	Graph shows comparison groups according to systolic of mobilization.	blood pressure
Figure (19):	Graph shows comparison groups according to diastolic of mobilization.	blood pressure
Figure (20):	Graph shows comparison groups as regard VAS during	

List of Abbreviations

Abb.	Full term
1ry	Primary
	Antidiuretic hormone
	American Society of Anesthesiologists
	Cyclooxygenase enzymes
	Corticotrophin-releasing hormone
	Electrocardiogram
	Gamma-amino butyric acid
HR	Heart rate
IASP	International Association for the Study of Pain
IV	
NHS	National Health Service
NIBP	Non-invasive blood pressure
	Numeric rating scale
NSAIDs	Non-steroidal anti-inflammatory drugs
P.O.P	Postoperative pain
PGE2	Prostaglandins E2
PONV	Postoperative nausea and vomiting
SSR	Surgical Stress Response
TENS	Transcutaneous Electrical Nerve Stimulation
VAS	Visual analogue scale
VRS	Verbal rating scale

INTRODUCTION

bdominal field block was first described in 1899 by Schleich. Various methods of abdominal field block have been used in anaesthetic practice over recent decades. A technique involving multiple injections of local anaesthetic in the abdominal wall was used in the 1980's. This technique was simplified with a single injection non-ultrasound technique used through the 1990's, which was commonly used for paediatric umbilical surgery. Since 2007 the technique has further developed to include ultrasound guidance and placement of rectus sheath catheters (Annadurai and Roberts, *2007*).

Ultrasound guidance for regional anaesthesia associated with higher block success rates, shorter onset times, reduced total anaesthetic dose required and reduced complications. There is also the advantage of direct observation of pattern of anaesthetic spread. Increasing use of ultrasound by the anaesthetic profession, and our evolving appreciation of the benefits of ultrasound in performance of regional techniques has caused some techniques to gain new clinical utility. The rectus sheath block is an example of this evolution, where ultrasound allows accurate placement of catheters and therefore continuous ongoing postoperative analgesia becomes possible (Sandeman and Dilley, 2008).

AIM OF THE WORK

The aim of this study has been to compare the efficacy of Rectus Sheath block versus wound infiltration with local anesthetic agent as regards post operative analgesia, its effect on hemodynamic changes (HR,BP) during rest and during mobilization and opioid consumption. The patients included in this study were having surgery with midline incision.

Chapter 1

ANATOMY OF ANTERIOR ABDOMINAL WALL AND IT'S NERVE SUPPLY

The abdominal wall is composed of 5 paired muscles: 2 vertical muscles (the rectus abdominis and the pyramidalis) and 3 layered flat muscles (the external abdominal oblique, the internal abdominal oblique, and the transversus abdominis muscles) (*Jankovic et al.*, 2009).

Rectus abdominis muscles:

The paired rectus abdominis muscles and their anterior and posterior sheaths are the key anatomical landmarks of this block. These muscles arise from the symphysis pubis and pubic tubercle and insert into the fifth, sixth, and seventh costal cartilages and the xiphoid process. The anterior sheath extends from the aponeurosis of the external oblique muscle and the anterior aponeurosis of the internal oblique muscle. The posterior sheath comprises the posterior aponeurosis of the internal oblique muscle and the aponeuroses of the transversus abdominis muscle (*Jankovic et al.*, 2009).

The external oblique muscle:

This is the largest and most superficial of the three flat abdominal muscles. It is located in the anterolateral aspect of the abdominal wall. Its fleshy part forms the anterolateral

aponeurosis forms portion and its the anterior part (Skandalakis and Skandalakis, *2014*). Its fibers inferoanteriorly and medially in the same direction as do the extended digits when they are in one's side pockets. It originates from external surfaces of 5th to 12th ribs and insertion; the fibers pass medially, they become aponeurotic. This aponeurosis ends medially in the linea-alba, pubic tubercle and anterior half of the iliac crest. Innervation is via the inferior six thoracic nerves and subcostal nerves (Frank and Natter MD, 2006).

Inferiorly, it folds back on itself to form the inguinal ligament between the anterior superior iliac spine and the pubic tubercle. Just superior to the medial part of the inguinal ligament, there is an opening in the aponeurosis called the superficial inguinal ring (*Keith and Anne*, 2006).

The internal abdominal oblique muscle:

Is the intermediate layer of the 3 paired flat abdominal muscles. It originates broadly from the anterior portion of the iliac crest, lateral half of the inguinal ligament and thoracolumbar fascia. The internal abdominal oblique inserts on the inferior border of the 10th-12th ribs, the linea Alba and the pubic crest via the conjoint tendon. The muscle fibers of the internal abdominal oblique course upward in a superomedial orientation, perpendicular to the muscle fibers of the external abdominal oblique (*Abdallah et al., 2015*).

Review of Literature

The transversus abdominis muscle:

Is the deepest of the 3 paired flat abdominal muscles. It originates on the internal surfaces of the 7th–12th costal cartilages, thoracolumbar fascia, anterior three fourths of the iliac crest and lateral third of the inguinal ligament. As with the other flat muscles, the transversus abdominis forms a broad aponeurosis that helps make up the rectus sheath before it fuses in the midline to the linea alba. Above the arcuate line the transversus abdominis aponeurosis contributes to the posterior rectus sheath. Below the arcuate line it is fuses with the other flat muscles as the anterior rectus sheath (*Finnerty and McDonnell*, 2012).

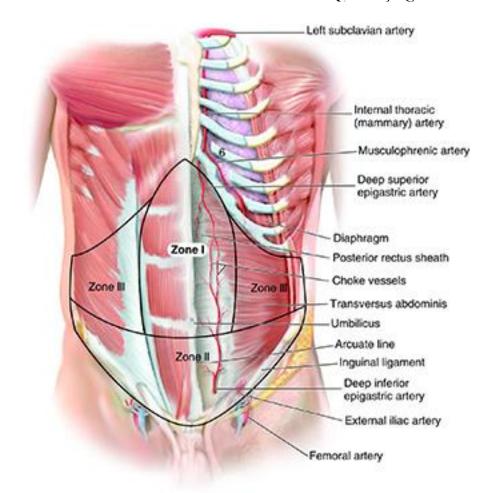


Figure (1): Clinical anatomy of the abdominal wall (Johnson et al., 2014).

Nerve supply:

Innervation of the anterolateral abdominal wall arises from the anterior rami of spinal nerves T7 to L1. Branches from the anterior rami include the intercostal nerves (T7-T11), the subcostal nerve (T12) and the iliohypogastric / ilioinguinal nerves (L1). Intercostal nerves T7 to T11 exit the intercostal spaces and run in the neurovascular plane between the internal oblique and the transversus abdominis muscles. The subcostal nerve (T12) and the

ilioinguinal/ iliohypogastric nerves (L1) also travel in the plane between the transversus abdominis and internal oblique, innervating both these muscles. The T7-T12 nerves continue anteriorly from the transversus plane to pierce the rectus sheath and end as anterior cutaneous nerves. The T7-T11 nerves provide sensory innervation to the rectus muscle and overlying skin. T7 gives sensory innervation at the epigastrium, T10 at the umbilicus, and L1 at the groin (*Snell*, 2008).

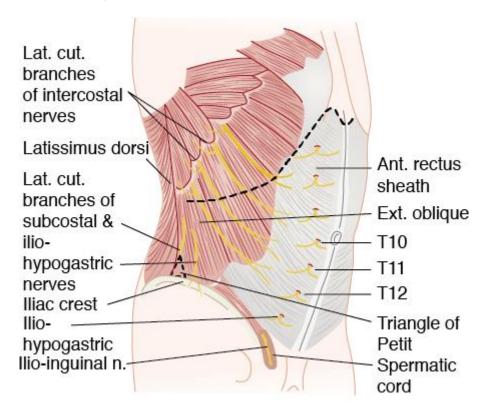


Figure (2): Abdominal wall innervation (superficial layer) (*Johnson et al.*, 2014).