

Study of Markers of Oxidative Stress and Reducing Substance during the Course of Diabetic Ketoacidosis in Diabetic Children and Adolescents

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Вy

Iman Mohamed Naguib

M.B.B., Ch - MUST University (2012)

Under supervision of

Prof. Dr. Mohsen Elalfy

Professor of Pediatric Faculty of Medicine – Ain Shams University

Dr. Hanan Hassan Aly

Lecturer of Pediatrics
Faculty of Medicine – Ain Shams University

Assist. Prof. Dr. Salah Ibrahim

Assistant Professor of Pediatrics Faculty of Medicine – Al-Azhar University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohsen Elafy**, Professor of Pediatric Faculty of Medicine – Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Ibanan Ibassan Aly**, Lecturer of Pediatrics Faculty of Medicine – Ain Shams University for her sincere efforts, fruitful encouragement.

I am deeply thankful to Assist. Prof. Dr. Salah Ibrahim, Assistant Professor of Pediatrics Faculty of Medicine

– Al-Azhar University for his great help, outstanding support, active participation and guidance.

Dman Mohamed Naguib

Dedication

Words can never express my sincere thanks to My Family and My Loving Fiancé for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

Also, I would like to express my greatest and everlasting gratitude to **Professor Fatma Ibrahim** as she supported me and gave me great hope to accomplish this study. May God bless her.

I would like also to thank the **Patients** who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

List of Contents

Title	Page No.
List of Tables	6
List of Figures	10
List of Abbreviations	14
Introduction	1
Aim of the Work	17
Review of Literature	
Diabetes Mellitus	18
Oxidative Stress	36
Subjects and Methods	53
Results	64
Discussion	112
Summary	
Conclusion	124
Recommendations	125
References	126
Arabic Summary	

List of Tables

Table No.	Title Page No.
Table (1):	Criteria for the diagnosis of diabetes mellitus
Table (2):	Types of insulin
Table (3):	One-Sample Kolmogorov-Smirnov Test64
Table (4):	Mean age and sex of the patients in the current study
Table (5):	Description of variables on day 166
Table (6):	Description of variables on day 367
Table (7):	Description of variables on day 568
Table (8):	Description of laboratory data69
Table (9):	Comparison between control group and patients group regarding the studied parameters at day 1 (no. = 40)70
Table (10):	Comparison between control group and patients group regarding the studied parameters at day 3 (no. = 40)72
Table (11):	Comparison between control group and patients group regarding the studied parameters at day 5 (no. = 40)74
Table (12):	Comparison between control group and patients group regarding the studied parameters at day 1 (no. = 56)76
Table (13):	Comparison between control group and patients group regarding the studied parameters at day 3 (no. = 50)78
Table (14):	Total antioxidant capacity on day 1, day 3, day 5 compared80
Table (15):	Reduced glutathione on day 1, day 3, day 5 compared81

List of Cables Cont...

Table No.	Title	Page No.
Table (16):	Malondialdehyde on day 1, day 3, compared	
Table (17):	Catalase on day 1, day 3, day 5 compa	red84
Table (18):	Super oxide dismutase on day 1, day 5 compared.	-
Table (19):	Glutathione peroxidase on day 1, day 5 compared.	•
Table (20):	Glutathione reductase on day 1, day 5 compared	
Table (21):	Glutathione S Transferase on day 1, day 5 compared	•
Table (22):	Correlation between malondialdehydohemoglobin A1c, hemoglobin level, Ph l all patients studied on day 1	evel in
Table (23):	Correlation between malondialdehyde hemoglobin A1c, hemoglobin level, Ph l all patients studied on day 3	evel in
Table (24):	Correlation between malondialdehyd hemoglobin A1c, hemoglobin level, Ph l all patients studied on day 5	evel in
Table (25):	Correlation between the hemoglob patients and studied enzymes antioxidant capacity, Reduced glutat Malodialdehyde, Catalase, Supe dismutase, Glutathione perox Glutathione reductase, Glutathione transferase on days 1, 3, 5	s(Total chione, roxide xidase, ne S

List of Cables Cont...

Table No.	Title Pag	e No.
Table (26):	Correlation between pH of the arterial blood gas of patients during DKA and the studie enzymes (Total antioxidant capacity Reduced glutathione, Malodialdehyde Catalase, Superoxide dismutase, Glutathione peroxidase, Glutathione reductase Glutathione S transferase) on days 1, 3, 5	d y, e, e
Table (27):	Correlation between the HbA1c % of patients during DKA and the studie enzymes (Total antioxidant capacity Reduced glutathione, Malodialdehydd Catalase, Superoxide dismutase Glutathione peroxidase, Glutathione reductase, Glutathione S transferase) of days 1, 3, 5	d y, e, e, e
Table (28):	Correlation between haptoglobin and the studied enzymes Total antioxidant capacity Reduced glutathione, Malodialdehydd Catalase, Superoxide dismutase Glutathione peroxidase, Glutathione reductase, Glutathione S transferase) of days 1, 3, 5	y, e, e n
Table (29):	Correlation between haptoglobin an hemoglobin of patients.	
Table (30):	Correlation between haptoglobin and pH of arterial blood gas of patients.	
Table (31):	Correlation between haptoglobin an HbA1c % of patients	
Table (32):	Relation between Haptoglobin and the hemoglobin groups	

List of Cables Cont...

Table No.	Title	Page No.
Table (33):	Relation between H	Iaptoglobin and PH
Table (34):	Relation between Ha	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Distribution of sex among the pat	
Figure (2):	Comparison between control patients group regarding MDA, CS Transferase, Glutathione perox	Glutathione
Figure (3):	Comparison between control patients group regarding Total capacity, Reduced Glutathione Super oxide dismutase, and Reductase.	antioxidant , catalase, Glutathione
Figure (4):	Comparison between control patients group regarding MDA, of S Transferase, Glutathione perox	Glutathione
Figure (5):	Comparison between control patients group regarding Total capacity, Reduced Glutathione Super oxide dismutase, and Reductase.	antioxidant , catalase, Glutathione
Figure (6):	Comparison between control patients group regarding MDA, of S Transferase, Glutathione perox	Glutathione
Figure (7):	Comparison between control patients group regarding Total capacity, Reduced Glutathione Super oxide dismutase, and Reductase.	antioxidant , catalase, Glutathione
Figure (8):	Comparison between control patients group regarding MDA, of S Transferase, Glutathione perox	Glutathione

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (9):	Comparison between control g patients group regarding Total a capacity, Reduced Glutathione, Super oxide dismutase, and G Reductase.	ntioxidant catalase, lutathione
Figure (10):	Comparison between control g patients group regarding MDA, G S Transferase, Glutathione peroxic	lutathione
Figure (11):	Comparison between control g patients group regarding Total a capacity, Reduced Glutathione, Super oxide dismutase, and G Reductase.	ntioxidant catalase, lutathione
Figure (12):	Total antioxidant capacity on day day 5 compared	
Figure (13):	Reduced glutathione on day 1, da compared	· · · · · · · · · · · · · · · · · · ·
Figure (14):	Malondialdehyde on day 1, day compared	
Figure (15):	Catalase on day 1, day 3, day 5 con	npared84
Figure (16):	Super oxide dismutase on day 1, da compared.	
Figure (17):	Glutathione peroxidase on day 1, 5 compared	• •
Figure (18):	Glutathione reductase on day 1, da compared.	ay 3, day 5
Figure (19):	Glutathione S Transferase on day day 5 compared.	7 1, day 3,
Figure (20):	Correlation between HbA malondialdehyde day 1	1c and

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (21):	Correlation between HbA1c malondialdehyde day 3	
Figure (22):	Correlation between HbA1c malondialdehyde day 5	
Figure (23):	Relation between the hemoglobin of and the studied enzymes Total ant capacity, and reduced glutathione	ioxidant
Figure (24):	Relation between the hemoglobin of and the studied enzymes Malondia and Catalase.	ıldehyde
Figure (25):	Relation between the hemoglobin of and the studied enzymes Sug dismutase, and glutathione peroxidate	peroxide
Figure (26):	Relation between the hemoglobin of and the studied enzymes Glu- reductase, and Glutathione S transfe	tathione
Figure (27):	Relation between the pH of the blood gas of patients during DKA studied enzymes Total antioxidant of and Reduced glutathione	and the capacity,
Figure (28):	Relation between the pH of the blood gas of patients during DKA studied enzymes Malondialdehyd Catalase.	and the
Figure (29):	Relation between the pH of the blood gas of patients during DKA studied enzymes Superoxide dismut. Glutathione peroxidase	and the ase, and

List of Figures Cont...

Fig.	No.	Title	Page No.
Figu	ure (30):	Relation between the pH of the blood gas of patients during DKA studied enzymes Glutathione reduct Glutathion S transferase	and the ase, and
Figu	are (31):	Relation between the HbA1c % of and Total antioxidant capacity	_
Figu	are (32):	Relation between the HbA1c % of and Reduced glutathione	_
Figu	ıre (33):	Relation between the HbA1c % of pati Malondialdehyde	
Figu	ıre (34):	Relation between the HbA1c % of and Catalase	
Figu	ıre (35):	Relation between the HbA1c % of and Superoxide dismutase	_
Figu	are (36):	Relation between the HbA1c % of and Glutathione peroxidase	-
Figu	ıre (37):	Relation between the HbA1c % of and Glutathione reductase	-
Figu	ıre (38):	Relation between the HbA1c % of and Glutathione S transferase	_
Figu	ıre (39):	Relation between Haptoglobin a hemoglobin groups.	
Figu	ıre (40):	Relation between Haptoglobin a severity	
Figu	are (41):	Relation between Haptoglobin and	444

List of Abbreviations

Full term Abb. CAT..... Catalase Cu.....Cupper DAG......Diacylglycerol DKA Diabetic ketoacidosis DM Diabetes mellitus G6PD deficiency... Glucose 6 phosphate dehydrogenase deficiency GPX..... Glutathione peroxidase GSHReduced glutathione HbA1c Glycated hemoglobin LDLLow density lipoproteins MDA..... Malondialdehyde NADPH......Nicotinamide adenine dinucleotide phosphate ROS...... Reactive oxygen species SMBG...... Self-monitored blood glucose SODSuperoxide dismutase *Zn.....Zinc*

INTRODUCTION

iabetes mellitus is one of the most common metabolic disorders among the pediatric age group (Guariguata et al., 2014). It can be described as a disorder where there are multiple factors that play a role in its pathogenesis including genetic predisposition as well as environmental factors (*Maahs* et al., 2010). Furthermore, these environmental factors include: infection, breastfeeding, psychological stress and birth weight (Virtanem, 2016). This genetic predisposition in addition to the mentioned factors trigger the autoimmune response against the pancreatic beta cells which eventually lead to their destruction (Guariguata et al., 2014).

Diabetic ketoacidosis is a very common, and a potentially life threatening complication of diabetes mellitus type 1. patients usually present with nausea, abdominal pain, respiratory distress, dehydration, and disturbed conscious level (NICE guidelines, 2015). Not only that, but unfortunately it could be the first presentation in newly diagnosed patients, and is actually the number one indication for hospitalization of children with diabetes mellitus type 1 (Cemil Kaya, 2015).

The islets cells of pancreas are highly susceptible to oxidative stress either endogenous, or exogenous. This eventually lead to their dysfunction and death. For example, throughout the respiratory chain in the inner membrane of the most important source of reactive oxygen species which is the