"Marginal fit of zirconia-reinforced lithium silicate laminate veneers with two thicknesses using different CAD/CAM systems"

Thesis

Submitted for Partial Fulfillment of the Requirements for the Master degree of Science in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

Presented by Manar Ahmed Mohamed Nour El-Mahdy

B.D.S Faculty of Dentistry, Ain Shams University (2013)

Faculty of dentistry
Ain shams university
2019

Supervisors

Dr. Marwa Mohamed Wahsh

Assistant Professor of Fixed Prosthodontics Department,
Faculty of Dentistry,
Ain Shams University

Dr. Ahmed Khaled Aboelfadl

Assistant Professor of Fixed Prosthodontics Department,
Faculty of Dentistry,
Ain Shams University

Dedication

I wish to dedicate this work to my great parents,
my dear husband, whom I could never done
this without their love, support and encouragement

Acknowledgement

I wish to express my gratitude to **Dr. Marwa Mohamed Wahsh**, Assistant Professor of Fixed
Prosthodontics, Faculty of Dentistry, Ain Shams
University for her unlimited willingness for advice and
guidance.

No word can express my sincere thanks and appreciation to **Dr. Ahmed Khaled Aboelfadl**, Assistant Professor of Fixed Prosthodontics Department, Faculty of Dentistry, for his help, support and encouragement.

Last but not least, deepest thanks to my dear professors, colleagues and staff members of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for their great support and cooperation. Special thanks to my dear friends **Dr.Marwa Mohamed Adel** and **Dr. Mohamed Samy** for their continued help.

LIST OF CONTENTS

	Page
List of figures	ii
List of tables	v
Introduction	1
Review of literature	3
Statement of problem	25
Aim of the study	26
Study methodology	27
Results	57
Discussion	64
Summary	73
Conclusion	76
References	77
Arabic summary	

LIST OF FIGURES

Number	Title	Page
Figure (1)	Different axes for milling machines	15
Figure (2)	Celtra duo	29
Figure (3)	(a)Mojo veneer cement, (b)ceramic etch, (c)ceramic primer	29
Figure (4)	In Eos X5 scanner	30
Figure (5)	InLab MCX5 milling machine	31
Figure (6)	Ceramill motion 2 milling machine	31
Figure (7)	InLab MCXL milling machine	32
Figure (8)	A typodent (NISSIN, Japan)	34
Figure (9)	Silicone putty index	34
Figure (10) :	Depth oriented grooves made by depth cutter stone	35
Figure (11)	The finished preparation	36
Figure (12)	Checking the temporary 0.5mm veneer thickness	36
Figure (13)	Verification of preparation amount using silicon index	37
Figure (14)	The two components of epoxy resin	37
Figure (15)	Epoxy resin die	38
Figure (16) :	Administration page for inLab 15 software	39
Figure (17) :	Selection of milling machine on the software	39
Figure (18) :	Material selection on the software	40
Figure (19) :	Scanning page for the software	40
Figure (20) :	Setting the model axis for the abutment	41

Number	Title	Page
Figure (21):	Drawing the restoration margin	41
Figure (22) :	Defining the insertion axis	42
Figure (23) :	Restoration parameter setting for 0.5 mm thickness laminate veneer	42
Figure (24):	Restoration parameter setting for 0.3 mm thickness laminate veneer	43
Figure (25):	Restoration adjustments	43
Figure (26):	Importing the design to CAM software	44
Figure (27) :	Exporting the design to STL file	44
Figure (28) :	Showing CAM software and selection of a new job	45
Figure (29):	Collection of the items that will be milled	45
Figure (30) :	Selection of manufacturer, material and, block size	46
Figure (31) :	Veneer positioning in the block on CAM software	47
Figure (32):	Sprue positioning in the middle of labial surface	47
Figure (33):	Checking the instruments of milling machine	48
Figure (34):	Starting the production process	48
Figure (35):	Adjusting the restoration sprue for milling on Ceramill motion 2	49
Figure (36) :	Showing the restoration in the block for milling using inLab MCXL	50
Figure (37) :	The polishing kit	51

Number	Title	Page
Figure (38) :	Hydrofluoric acid etching for the veneers fitting surface	51
Figure (39):	Rinsing of the hydrofluoric acid etch using oil free water spray	52
Figure (40):	Silane primer application on the fitting surface of the veneer	53
Figure (41):	Veneer cementation using finger pressure	53
Figure (42):	Final curing of the veneer	53
Figure (43):	The incisal margin under stereomicroscope	55
Figure (44):	The gingival margin under stereomicroscope	55
Figure (45) :	The mesial margin under stereomicroscope	56
Figure (46) :	The distal margin under stereomicroscope	56
Figure (47):	Bar chart showing average Marginal gap (µm) for different CAD/CAM systems and finish line thicknesses	58
Figure (48) :	Bar chart showing average marginal gap (μm) for different CAD/CAM systems	60
Figure (49) :	Bar chart showing average marginal gap (µm) for different finish line thicknesses	61
Figure (50)	Bar chart showing average marginal gap (µm) for different finish line thicknesses within each CAD/CAM system	63
Figure (51)	Bar chart showing average marginal gap (µm) for different CAD/CAM systems within each finish line thickness	63

LIST OF TABLES

Number		Title	Page
Table (1)	:	The materials used	28
Table (2)	:	Experimental factorial design	33
Table (3)	:	Mean \pm standard deviation (SD) of marginal fit (μ m) for different CAD/CAM systems and finish line thicknesses.	58
Table (4)	:	Effect of different variables and their interactions on marginal fit (µm)	59
Table (5)		Mean \pm standard deviation (SD) of marginal gap (μ m) for different CAD/CAM systems and finish line thicknesses.	60
Table (6)		Mean \pm standard deviation (SD) of marginal gap (μ m) for different CAD/CAM systems and finish line thicknesses.	61
Table (7)	:	Mean ± standard deviation (SD) of marginal gap (μm) for different CAD/CAM systems and finish line thicknesses	62