

Comparative study between the outcome of endovascular treatment of varicocele with cyanoacrylate glues and surgical varicocelectomy

Thesis

Submitted for Partial Fulfillment of Master Degree In General Surgery

By
Mohamed Moustafa Kamel El-Tomy
(M.B.,B.Ch.)

Supervised by

Prof. Dr. Ali Mohamed Ali El-Anwar

Professor of General Surgery
Faculty of Medicine - Ain Shams University

Dr. Mohamed Abd El-Monem Rizk

Assistant Professor of Vascular Surgery Faculty of Medicine - Ain shams University

Dr. Amr Mahmoud Abd El-Samad

Assistant Professor of Diagnostic and Interventional Radiology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2019

List of Contents

	Title Page
•	List of Abbreviations
•	List of Tables
•	List of Figures
•	Introduction
•	Aim of the Work4
•	Review of Literature
	Anatomical background5
	Pathogenesis of varicocele21
	Pathophysiology of varicocele in male infertility26
	Diagnosis of varicocele35
	Treatment of varicocele48
•	Patients and Methods
•	Results
•	Discussion
•	Summary
•	Conclusion
•	References
	Arabic Summary

Introduction

List of Abbreviations

2-DTwo-dimensional **ATP**.....Adenosine Triphosphate **DNA**Deoxyribonucleic acid **DNAF**.....Deoxyribonucleic acid Fragmentation **FSH**Follicle-stimulating Hormone IBCAIsobutyl-2-Cyanaocrylate ISV.....Internal Spermatic Vein **IUI**Intrauterine Insemination **IVF**In Vitro Fertilization MIP......Maximum Intensity Projections MSV.....Microsurgical sub-inguinal varicocelectomy **NAC**N-acetyl cysteine NBCA......N-Butyl-2- Cyanaocrylate NBCA-MS..... Methacryloxy Sulfolane NONitric Oxide PP.....Pampiniform Plexus **RC**Retroperitoneal Collaterals **ROS**Reactive Oxygen Species RVRenal Vein STS.....Sodium Tetradecyl Sulfate TACTime-activity Curves

List of Tables

Table No.	Title	Page	
Review of Literature			
Table (1):	The Dubin classification	37	
Table (2):	Grades of reflux according Cornud	38	
Table (3):	Simplified color Doppler ultrasound classification of varicoceles according to Pauroso	-	
Table (4):	Bähren classification of types of varicocele	39	
Table (5):	Grades of time activity curves	47	
Table (6):	Indications & relative contraindications for percutaneous embolization in treatment of symptomatic varicocele		
Results			
Table (1):	Methods of management of the studied population	83	
Table (2):	Age of the whole population	84	
Table (3):	Age of each group of the study	84	
Table (4):	Marital status of the whole population	85	
Table (5):	Marital status of both study groups (surgery = group A, embolization = group B)	86	
Table (6):	Smoking history of the whole population	87	

List of Tables

Table No.	Title	Page
Table (7):	Smoking history of both study groups (surgery = group A, embolization = group B)	88
Table (8):	Main complaint of the whole population	89
Table (9):	Main complaint of both study group (surgery = group A, embolization = group B)	
Table (10):	Varicocele laterality of the whole studied population	92
Table (11):	Varicocele laterality of both study groups (surgery = group A, embolization = group B)	93
Table (12):	Varicocele grading of the whole studied population	94
Table (13):	Varicocele grading of both study groups (surgery = group A, embolization = group B)	95
Table (14):	Pain assessment of the whole studied population	97
Table (15):	Pain assessment of both study groups (surgery = group A, embolization = group B)	98
Table (16):	Pre & post-operative sperm concentration of the whole studied population	101

List of Tables

Table No.	Title	Page
Table (17):	Pre & post-operative sperm concentration of both study groups (surgery = group A, embolization = group B)	102
Table (18):	Pre & post-operative total sperm motility percentage of the whole studied population	105
Table (19):	Pre & post-operative total sperm motility percentage of both study groups (surgery = group A, embolization = group B)	107
Table (20):	Pre & post-operative abnormal sperm forms percentage of the whole studied population	110
Table (21):	Pre & post-operative abnormal sperm forms percentage of both study groups (surgery = group A, embolization = group B)	112

Figure No.	Title	Page
rigure no.	11116	Page

Review of Literature			
Review of Diceracule			
Fig. (1):	Transverse section of the testis5		
Fig. (2):	Testis and epididymis6		
Fig. (3):	Anatomical location of appendages 7		
Fig. (4):	(a) Longitudinal US scan of a normal testis in a 26-year-old man shows the appendix testis (arrow). (b) Longitudinal US scan of a normal epididymis in a 24-year-old		
Fig. (5):	Paminiform plexus of veins Pre- Valsava (Right) and post Valsalve (left) notice the increase in diameter of the veins		
Fig. (6):	Arterial supply and venous drainage of the scrotal contents		
Fig. (7):	Double inferior vena cava (note the termination of the left spermatic vein at the junction of left renal vein and the left IVC)		
Fig. (8):	Variations of the testicular vein 17		
Fig. (9):	Anatomy of the left internal spermatic vein, testicular varicocele, and collateral drainage pathways 18		
Fig. (10):	Left internal spermatic vein (ISV) venogram demonstrating multiple retroperitoneal collaterals (RC)		

Figure No.	Title	Page
Fig. (11):	Nutcracker phenomenon in a varicocele confirmed on computed tomography (CT)	23
Fig. (12):	Fasciomuscular tube of the ISV	25
Fig. (13):	Summary of the proposed molecular mechanisms for the pathologic impact of varicoceles on fertility potential	33
Fig. (14):	Reactive oxygen and nitrogen species generation in infertile men with varicocele	33
Fig. (15):	Varicocele-induced sperm biochemical pathways of ROS generation	
Fig. (16):	Sagittal gray scale 2D-ultrasound of a hypotrophic left testicle with an underlying varicocele (white arrow)	37
Fig. (17):	Digital scrotal thermography	42
Fig. (18):	ISV venography. RV venography under Valsalva maneuver with reflux through the ISV (double arrows) into the PP (double arrowheads)	
Fig. (19):	Scrotal scintigraphy of a normal patient versus a varicocele patient. Courtesy of Mali WP	47
Fig. (20):	Surgical incision sites for retroperitoneal (Palomo), inguinal (Ivanissevich), and sub-inguinal (Marmar) approaches	58

Figure No.	Title Page
Fig. (21):	Surgical incision sites for retroperitoneal (Palomo), inguinal (Ivanissevich), and sub-inguinal (Marmar) approaches
Fig. (22):	Illustration depicting a left subinguinal microsurgical varicocelectomy
Fig. (23):	Illustration of left spermatic vein access from the right femoral vein 67
Fig. (24):	The tools necessary to obtain the mixture between lipiodol and cyanoacrylate
Fig. (25):	(a) 4 F hydrophilic catheter within the distal portion of the left spermatic vein (arrow); (b) Spermatic vein filled with N2BCA after catheter removal
Fig. (26):	Typical sandwich coil embolization of the left internal
Fig. (27):	Sandwich embolization of the left internal spermatic vein with Amplatzer vascular plugs
Results	
Fig. (1):	Methods of management of the studied population 83
Fig. (2):	Age of both study groups (surgery = group A, embolization = group B)84

Figure No.	Title	Page
Fig. (3):	Marital status of the studied population	85
Fig. (4):	Age of both study groups (surgery = group A, embolization = group B)	86
Fig. (5):	Smoking history of the whole population	87
Fig. (6):	Smoking history of both study groups (surgery = group A, embolization = group B)	88
Fig. (7):	Main complaint of the whole population	89
Fig. (8):	Main complaint of both study groups (surgery = group A, embolization = group B)	
Fig. (9):	Varicocele laterality of the whole studied population	92
Fig. (10):	Varicocele laterality of both study groups (surgery = group A, embolization = group B)	93
Fig. (11):	Varicocele laterality of the whole studied population	94
Fig. (12):	Varicocele grading of both study groups (surgery = group A, embolization = group B)	95
Fig. (13):	Pain assessment of the whole studied population	97

Figure No.	Title	Page
Fig. (14):	Pain assessment of the whole studied population	97
Fig. (15):	Pain assessment of both study groups (surgery = group A, embolization = group B)	98
Fig. (16):	Pain assessment of both study groups (surgery = group A, embolization = group B)	98
Fig. (17):	Pre & post-operative sperm concentration of the whole studied population	101
Fig. (18):	Pre & post-operative sperm concentration of the whole studied population	101
Fig. (19):	Pre & post-operative sperm concentration of both study groups (surgery = group A, embolization = group B)	102
Fig. (20):	Pre & post-operative sperm concentration of both study groups (surgery = group A, embolization = group B)	
Fig. (21):	Pre & post-operative total sperm motility percentage of the whole studied population	106
Fig. (22):	Pre & post-operative total sperm motility percentage of the whole studied population	106

Figure No.	Title Page
Fig. (23):	Pre & post-operative total sperm motility percentage of both study groups (surgery = group A, embolization = group B)
Fig. (24):	Pre & post-operative total sperm motility percentage of both study groups (surgery = group A, embolization = group B)
Fig. (25):	Pre & post-operative abnormal sperm forms percentage of the whole studied population
Fig. (26):	Pre & post-operative abnormal sperm forms percentage of the whole studied population
Fig. (27):	Pre & post-operative abnormal sperm forms percentage of both study groups (surgery = group A, embolization = group B)
Fig. (28):	Pre & post-operative abnormal sperm forms percentage of both study groups (surgery = group A, embolization = group B)

Introduction

Varicocele is defined as dilatation and tortuosity of the pampiniform plexus and testicular veins in the scrotum. It is found in 6% of children, 15% of male adults, and 40% of men complaining from infertility (*Ficarra et al.*, 2006).

The pathophysiology of varicocele is different compared with that of varicose veins as the congenital absenteeism of valves within the spermatic vein is the main etiology for varicocele. In contrast, the incompetence of venous valves owing to post thrombotic syndrome caused by venous thrombosis or reflux is the primary factor for varicose veins. Other factors that play a part are the anatomical dissimilarity between the left and right testicular veins the and nutcracker phenomenon (compression of the left renal vein in between the abdominal aorta and the superior mesenteric artery) (Shiraishi et al., 2009).

Varicocele is diagnosed mainly clinically and is more common on the left side. The existence of right side varicocele should alert the treating physician to exclude right renal cell carcinoma. On clinical examination, large varicoceles are characterized by the typical "bag of worms" around the testis. Ultrasonography, particularly Doppler ultrasonography, allows accurate diagnosis of varicocele, even in sub clinical varicocele (*Kubal et al.*, 2004).

Introduction

Agreeing to the most recognized and used clinical classification the varicoceles can be graded as followed: visible and palpable varicose at rest (grade 3), palpable at rest but not evident (grade 2), palpable only by Valsalva maneuver (grade 1) and detectable only by ultrasound (subclinical) (*Dubin et al.*, 1970).

Despite the controversies surrounding the sonography criteria for varicocele diagnosis, almost all clinicians agree that the diagnosis can be established by measuring testicular vein enlargement of more than three mm, associated with reflux. The clinical importance of varicocele depends on the fact that it is the most correctable factor of male infertility. Several studies have attempted to show the clinical consequences of varicocele, which have demonstrated that testicular hypotrophy, disturbed spermatogenesis, altered semen parameters and consequently infertility are the collective caused by varicocele (Sigman et al., 1997).

Even though the precise mechanism of testicular hypotrophy and disturbed spermatogenesis remains unclear, hormonal changes provoked by varicocele have been suggested as contributing factors. Moreover, changes in testicular temperature from the varicocele have been postulated as a cause of impaired spermatogenesis. If varicocele is left untreated, the sum of these adverse effects, notably testicular hypotrophy, can progress with age. This observation led experts in male reproductive medicine to correct the varicoceles at a younger age. Currently, young males that present positive indicators,

-Introduction

such as testicular discordance of more than 20%, or testicular pain, are being considered candidates for varicocele treatment (*Diamond et al.*, 2011).

A variability of treatment methods, including surgical or interventional approaches, have been used for varicocelectomy. The ultimate goal is to stop the veins from refluxing to the testis and preserving arterial and lymphatic drainage. Although the traditional surgical treatment for varicocele involves operative ligation of the spermatic vein, several less invasive operative strategies have been described. Endovascular treatment with percutaneous embolization of the internal spermatic vein has similarly gained popularity in clinical practice owing to perceived advantages of less patient suffering and speedy recovery (Nabi et al., 2004).

Both surgical and endovascular methods are efficient in managing varicoceles with success rates up to 95 % for surgically managed cases (*Lord and Burrows*, 2003) and 60–95 % for endovascular embolization (*Alqahtani et al.*, 2002). Percutaneous embolization is an smart substitute to decrease the accompanying risks with surgical procedures. In addition, a pre-embolization venogram identifies all of the diseased veins and collaterals, resulting in lower recurrences.

Recurrence rates after surgical treatment range from 1 to 22% (*Bechara et al., 2009*) and after endovascular treatment recurrence rates range from 7 to 11 % (*Alqahtani et al., 2002*).