Posterior Hemivertebra Resection in Congenital Spinal Deformities

Chesis

Submitted for Partial Fulfillment of M.D. Degree of Orthopaedic Surgery

By

Mahmoud Ahmed Hussein Ashour

M.B.B.Ch.

M.Sc. of Orthopaedic Surgery
Faculty of Medicine- Ain Shams University

Under Supervision of

Prof. Dr. Naser Hussein Zaher

Professor of Orthopaedic Surgery
Faculty of Medicine - Ain Shams University

Dr. Mohammed Nabil Mohammed

Assistant Professor of Orthopaedic Surgery Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohammed Elbadrawi

Assistant Professor of Orthopaedic Surgery Faculty of Medicine - Ain Shams University

Dr. Tamem Shafek Flkhateb

Lecturer of Orthopaedic Surgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

2018

صَيْلَة قالله العَظيم

(سورة هود - الاية ۸۸)

First of all thanks to **Allah** to whom I relate any success in achieving any work in my life.

I would like to express my sincere gratitude to **Prof. Dr. Naser Hussein Zaher**, for his kind supervision, valuable advice and unlimited help in providing all the facilities for this work.

I would like to express my great appreciation to Ass. Prof. Dr. Mohammed Nabil Mohammed, for his kind supervision, continuous help and the great hard work that helped to finalize this work.

I would like to express my sincere gratitude to Ass. Prof. Dr. Ahmed Mohammed Elbadrawi, for his kind supervision, continuous help and the great hard work that helped to finalize this work.

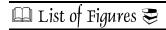
I am heartily thankful to my supervisor **Dr. Tameem Shafek Elkhateeb**, for his, continuous support and encouragement throughout this work.

Mahmoud Ahmed Hussein Ashour

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	II
List of Figures	IV
Introduction	1
Aim of the Work	3
Review of literature	
- Chapter (1): Introduction	4
- Chapter (2): Relevant Anatomy and Biomechanics	s of
Implants	11
- Chapter (3): Biomechanics	18
- Chapter (4): Evaluation of Deformity Patient	29
- Chapter (5): Surgical Management of Congenital Scoliosis	<u>44</u>
Patients and Methods	67
Results	91
Case Presentation	101
• Discussion	119
Summary	126
• Conclusion	128
References	130
Arabic Summary	

List of Abbreviations


Abb.	Full term
3D	Three Dimensional
AP	Antero-posterior
CSF	Cerebrospinal fluid
CSVL	Central Sacral Vertical Axis
СТ	Computed Tomography
EOS	Early onset scoliosis
Fig	Figure
HMMS	Hemimetameric shift
LIV	Lower instrumented vertebra
MAGEC	Magnetic Expansion Control
MCGR	Magnetically controlled growing rods
MRI	Magnetic Resonance Imaging
NO	Number
PA	Postero-anterior
РЈК	Proximal junctional kyphosis
PRBCs	Packed red blood cells
PXRs	Plain X-rays
RA	Regional angulation
ROM	Range of motion
SD	Standard deviation

Tist of Abbreviations

Abb.	Full term
SVA	Sagittal Vertebral Axis
TIS	Thoracic insufficiency syndrome
UIV	Upper instrumented vertebra
UMNL	Upper motor neuron lesion
VAS	Visual analogue scale
VEPTR	Vertical Expandable Prosthetic Titanium
	Rib

List of Tables

No	Table	Page
1	Patient No, Sex, Age and Type of deformity	71
2	Patient No, coronal Cobb angles preoperatively	94
	and postoperatively, % of correction and	
	degree of correction	
3	Patient No, Local and Regional kyphosis angles	95
	preoperatively and postoperatively, % of	
	correction and degree of correction	
4	Pre and postoperative angles and degree of	96
	correction	
5	Percentage of deformity correction	97
6	Pre and postoperative neurological status	99
7	Postoperative complications and its	100
	management	
8	Case 1 data	101
9	Case 2 data	106
10	Case 3 data	110
11	Case 4 data	114

List of Figures

No	Figure	Page
1	Formation defects A, Wedge vertebra. B, Fully	5
	segmented hemivertebra. C, Partially	
	segmented hemivertebra. D, Unsegmented	
	hemivertebra	
2	A block vertebra, B unilateral bar, C unilateral	7
	bar with contralateral hemivertebra	
3	Types of hemivertebra	8
4	Dimensions of (A) T3, (B) T8, and (C) L4	12
	pedicles	
5	Dorsal pedicle landmarks (Entry points),	15
	(Anatomical landmarks)	
6	Schematic for dorsal entry points and	16
	projections	
7	Schematic for lumbar entry points and	17
	projections	
8	Sagittal balance assessment	19
9	Drawing shows coronal balance, measured as	20
	distance between C7 plumb line and central	
	sacral vertical line	
10	Coronal decompensation and relationship	21
	between shoulders to the pelvis	
11	Deformity planes	22
12	Apical and neutral vertebrae	23
13	Implant termination (A) A long implant must	24
	not terminate near or at an apical vertebra. (B)	
	A longer implant is mandatory. (C) Spine	
	deformation progression at the termini of the	

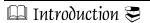
No	Figure	Page
	stabilizing implant is inevitable if stopping at	
	the curve apex. (D) This is also true for scoliotic	
	deformity correction. (E) Postoperative	
	deformity progression as the implant stopped	
	at and not beyond the apical vertebra	
14	Maintenance of deformity correction	26
15	Coronal-plane deformities may be reduced	27
	using compression and distraction	
16	Visual assessment of spinal balance (40)	31
17	Assessment of ROM	32
18	Hanging test	33
19	Push prone test	33
20	Forward bending test from side	34
21	Forward bending test from behind using	34
	scoliometer	
22	Standing AP or PA and Lateral	36
23	Cobb angle measurement	37
24	Cobb angle for kyphosis	38
25	Traction films	39
26	Supine Side-benders: Mandatory that all curves	39
	are visualized	
27	Bolster fulcrum test	40
28	Anterior view of a three-dimensional computed	41
	tomography image of a hemivertebra	
29	(A) Axial, (B) Coronal CT images showing	42
	hemivertebra	
30	Sagittal T1-weighted screening MRI scan in a	43

No	Figure	Page
	patient with congenital scoliosis showing an	
	Arnold-Chiari malformation with the cerebellar	
	tonsils lying within the spinal canal and a	
	syrinx	
31	Bed in maximum reverse Trendelenburg position	46
32	Halo wheelchair	46
33	Halo-walker traction that allows ambulation in traction	47
34	Young female patient (1.5 years of age) with a left thoracic scoliosis shown from (a) anteroposterior and (b) lateral views prior to treatment. Patient after convex hemiepiphysiodesis and concave distraction that provided (c) accurate correction of the deformity	51
35	Technique of dual rod instrumentation	54
36	(A) Photograph of a magnetically controlled growing rod with a telescopic actuator portion that holds a small internal magnet. (B) MCGR external remote controller	54
37	VEPTR I	56
38	VEPTR II	57
39	Incision and dissection A. Incision line B. Dissection to spinous process	60
40	Subperiosteal dissection of paraspinal muscles A. Dorsal region B. Lumbar region	62
41	(A) Fluoroscopy was used to confirm the right levels; (B) the pedicle screws were placed after	63

No	Figure	Page
	tapping	
42	The hemivertebra with the disc above and below were removed completely	64
43	The gap left after the resection was closed by the compression and the posterolateral fusion was performed	66
44	Pre and one year postoperative x-rays	66
45	Sex distribution	68
46	Deformity type	69
47	Affected regions	70
48	Visual analogue scale	74
49	Standing whole spine AP-Lateral views (Case 2)	77
50	Right and left bending views (Case 2)	77
51	C.T scan images with 3D Reconstruction (Case 1)	79
52	MRI image showing congenital hemivertebra (Case 1)	80
53	Patient positioning on frame (Case 6)	83
54	Pedicle screws insertion after hemivertebra identification	84
55	Removal of the posterior elements and pedicle identification	85
56	Removal of the vertebral body and pedicle	86
57	Closure of the gap and deformity correction	87
58	Pre and postoperative correction results	93
59	Percentage of correction	97
60	Patient 1: Preoperative (A)	102

No	Figure	Page
61	Patient 1: Preoperative (B)	103
62	Patient 1: Preoperative (C)	103
63	Patient 1: Postoperative	104
64	Patient 1: Last follow up (16 months)	105
65	Patient 3: Preoperative (A)	107
66	Patient 3: Preoperative (B)	107
67	Patient 3: Postoperative (A)	108
68	Patient 3: Postoperative (B)	108
69	Patient 3: Last follow up (13 months)	109
70	Patient 19: Preoperative (A)	111
71	Patient 19: Preoperative (B)	112
72	Patient 19: Postoperative	113
73	Patient 19: Last follow up (18 months)	113
74	Patient 11: Preoperative	115
75	Patient 11: Postoperative	115
76	Patient 11: PJK and implant failure during	116
	follow up	
77	Patient 11: Revision + Extension + Rib strut	117
78	Patient 11: Last follow up (15 month)	118

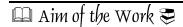
Introduction


Congenital vertebral malformations generally occur in early embryonic life (before 7weeks), and are caused by disorders in formation or segmentation of the spinal segments that originate from primitive mesenchymal condensations of embryonic cells.⁽¹⁾

Complete failure of formation leads to hemivertebra with the absence of one pedicle and a region of the vertebral body, while incomplete failure of formation leads to a wedged vertebra. (2)

Hemivertebrae could be fully segmented, partially segmented and unsegmented. (3)

McMaster and David found that the degree of spine deformity produced depends on four factors: first, the type of hemivertebra; secondly, its location; thirdly, the number of hemivertebrae and their relationship with each other; and finally, the age of the patient. (4)


As many as 61% of patients with congenital scoliosis may have abnormalities affecting other organ systems. Anomalies may appear independently or as part of a syndrome, such as the VATER syndrome (vertebral anomalies, anorectal atresia, tracheoesophageal fistula,

renal and vascular anomalies). The noted association of cardiac and limb defects (eg, radial clubhand, thumb hypoplasia) has led to an expansion of the acronym from VATER to VACTERL. Because the spine, genitourinary tract, musculoskeletal system and cardiovascular system all develop during similar times, an embryonic insult may affect one or all of these systems. Defects in one system should prompt evaluation of the others.⁽⁵⁾

Conventional radiography often is difficult to interpret because of the patient's small size, the complex nature of the deformity, superimposed structures obscuring visualization of the anomaly. Advanced imaging with 3D computed tomography (CT) has been used to simplify interpretation and to show pedicular anatomy and bony anomalies thus helpful in preoperative evaluation and planning. Magnetic resonance imaging (MRI) is needed to exclude neural axis abnormalities (eg, spinal dysraphism). (6)

Hemivertebra resection can be done via combined anterior and posterior or posterior only surgery. With the development of the pedicle screws technique, hemivertebra resection can be performed successfully with only a posterior approach using a one-stage procedure. This can be performed with an excellent outcome. (8)

Aim of the Work

This prospective study is conducted to evaluate the results of posterior only resection of hemivertebrae in congenital spinal deformities.