

Extramedullary versus intramedullary bone fixation Treatment of peritrochanteric fractures

A Systematic review and meta-analysis for partial fulfillment for the master degree in Orthopaedic Surgery.

By

Ahmed Mohy Eldin Mohamed Mohamed Hefny

M.B.B.Ch

Faculty of Medicine -Kasr Al Aini University

Under Supervision of

Prof.Dr.Osama Mohamed El sayed Farag

Assistant Professor of Orthopaedic Surgery Faculty of Medicine-Ain Shams University

Dr.Ahmed Mohamed Mohasseb

Lecturer of Orthopaedic Surgery Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and above all thanks to ALLAH.

I would like to express my endless gratitude & appreciation to my eminent professor: **Prof. DR. Osama**Mohamed El Sayed Farag, Assistant Professor of Orthopedic surgery, Faculty of medicine, Ain shams University, for giving me the honor to work under his supervision & from whome I did learn a lot, he encouraged me, removed all the obstacles from my way & pushed me to achieve success.

My sincere thanks to **Dr. Ahmed mohamed mohasseb** lecture of Orthopedic surgery, Faculty of medicine,
Ain shams University, for his continous guidance, honest help
& endurance that made this search come to light.

My great thanks to orthopedic surgery department, Faculty of medicine, Ain shams University, for giving me the chance for postgraduate studies & continous learning.

I would also like to express my gratefulness to my family.

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Abstract	9
Introduction	1
Aim of the Work	12
Review of Literature	13
Materials and Methods	20
Results	22
Discussion	59
Conclusion	71
References	72
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Meta-analysis: relative risk - Failure of	f fixation23
Table (2):	Meta-analysis: relative risk – Wound i	infection26
Table (3):	Meta-analysis: continuous r. Duration of surgery	
Table (4):	Meta analysis: standardized difference- hospital stay	
Table (5):	Meta-analysis: continuous measure loss.	
Table (6):	Meta-analysis: continuous measure-fluoroscopy.	
Table (7):	Meta-analysis: relative risk- DVT	41
Table (8):	Meta-analysis: relative risk – Pu embolism.	•
Table (9):	Meta-analysis: relative risk- Non-un	nion: 47
Table (10):	Meta-analysis: relative risk – Hema	toma 50
Table (11).	Meta-analysis: relative risk – Malur	nion 53

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anatomy of proximal femur	1/
Figure (2):	Femoral neck anteversion.	
Figure (2):	Trabecular distribution across the p	
rigure (5):	femur	
Figure (4):	AO/OTA Orthopaedic trauma asse	
rigure (4).	classification	
Figure (5):	Dr G.S. Kulkami et al. Classif	
rigure (b).	Modified Jenson-Evan's Classification	
Figure (6):	Details the study selection flow	
Figure (7):	Forest plot of relative risk of fai	
riguic (1).	fixation between DHS and PFN	
Figure (8):	Funnel plot of relative risk of fai	
rigure (o).	fixation between DHS and PFN	
Figure (9):	Forest plot of relative risk of	
119410 (0).	infection between DHS and PFN	
Figure (10):	Funnel plot of relative risk of	
g 0 (_0)	infection between DHS and PFN	
Figure (11):	Forest plot of standraized mean dis	
	of duration of surgery between Dl	
	PFN	
Figure (12):	Funnel plot of standraized mean dis	
	of duration of surgery between Dl	HS and
	PFN	31
Figure (13):	Forest plot of standraized mean dif	fference
	of hospital stay between DHS and P	FN33
Figure (14):	Funnel plot of standraized mean dif	
	of hospital stay between DHS and P	
Figure (15):	Forest plot of standraized mean dis	
	of blood loss between DHS and PFN.	
Figure (16):	Funnel plot of standraized mean dis	
	of blood loss between DHS and PFN.	37

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (17):	Forest plot of standarized mean distortime of fluoroscopy between DI PFN.	HS and
Figure (18):		mean oetween
Figure (19):		fference
Figure (20):	Funnel plot of standraized mean did of risk of DVT between DHS and PF	
Figure (21):	Forest plot of relative risk of pul embolism between DHS and PFN	46
Figure (22):	Funnel plot of relative risk of pul embolism between DHS and PFN	46
Figure (23):	between DHS and PFN	49
Figure (24):	between DHS and PFN	49
Figure (25):	Forest Plot of relative risk of Herbetween DHS and PFN	52
Figure (26):	Funnel plot of relative risk of her between DHS and PFN	
Figure (27):	between DHS and PFN	54
Figure (28):	Funnel plot of relative risk of ma	l union 55

List of Abbreviations

Abb.	Full term
AO/OTA	Arbeitsgemeinschaft für Osteosynthesefragen,
	Orthopaedic trauma association
CI	Confidence interval
DHS	Dynamic Hip score
IFFs	Intertrochanteric femoral fractures
PFN	Proximal femoral nail
P-value	Probability value
RR	Relative risk
SE	Standard error
SMD	Standard mean difference
T-value	Test of significant value

Abstract

In the last few decades the rate of peritrochanteric fractures has been increased because of increased rate of high velocity trauma accident and bone rarefaction due to osteoporosis in old age. DHS and PFN are the gold standard treatments used in treatment of these fractures. Nineteen studies are identified for analysis from 2007 to 2017 that met our points of comparison.

In our study we compare between DHS and PFN regarding patient reported functional follow and complications.

INTRODUCTION

Half of hip fractures in the elderly are intertrochacnteric fractures, more than 50% of this fractures are unstable (1,2). Fractures of intertrochanteric region are more common than femoral neck since it has a thinner cortical bone and it occurs more commonly in elderly due to decrease bone density in old age⁽³⁾. Trochanteric fractures surgery aims to early recovery and prevention of further complications. The most common system used for classification of intertrochanteric fractures is AO system ⁽⁴⁾. AO classifications divide intertrochanteric fractures into four types: stable trochanteric (Type A1), unstable trochanteric (Type A2), fractures at the lesser trochanter (Type A3) and subtrochanteric fractures. In the last few decades dynamic hip screws was the gold standard in fixation of trochanteric fractures (5). But in unstable fracture higher rates of failures nearing 23% have been reported when using dynamic hip screws ⁽⁶⁾.

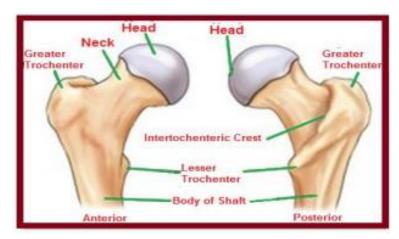
On other hand intramedullary nailing system has theoretical clinically and mechanical advantages than dynamic hip screw (7). Most authors depends on nailing system on treatment of unstable trochanteric fractures as its provides higher stability in this conditions (8,9,10). But numerous complications reported from intramedullary nailing system such as intraoperative intertrochantric fractures, difficultly in targeting the cephalic screw, postoperative fractures at the

distal end of the nail and tendinuous lesions of the abductors muscles due to large metaphyseal diameter of the nail (11).

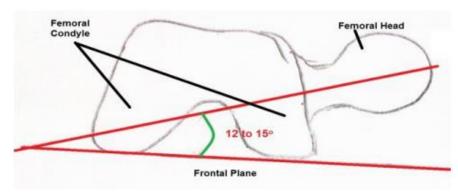
Instability of the dynamic hip screw in unstable inter trochantric fractures was the major complication and plate insertion by extended approach (8,9).

AIM OF THE WORK

The aim of this systematic review and Meta analysis is the critical appraisal of the studies that compare extramedullary to intramedullary bone fixation treatment of peri trochanteric fracture, the main focus being on number of cases, patient characteristics, patients reported functional follow up and complications.


REVIEW OF LITERATURE

Anatomy:


The femur structure is relatively complex, with bows and twists that disfigure its basically tubular structure. The head of the femur considerably over hangs the femoral shaft. This occurs because the neck makes an oblique angle with the shaft of the femur with an average of range 125-140°. There is considerable variability in both the neck-shaft angle and neck length. The femoral neck extends from the center of the femoral head medially and proximally so that the center of the femoral head is at the same level of the tip of the greater trochanter. The effect of the overhanging femoral head and neck is to lateralize the abductors, which attach to the greater trochanter from the center of rotation (center of the femoral head) (12).

The coronal plane of the femur is generally referred to the posterior distal femoral condyles. When oriented in this plane, it can be seen that the proximal femur, including the femoral head and neck are rotated anteriorly. This is commonly referenced to as femoral head-neck anteversion. However, it is really a combination of a torsional change in the intertrochanteric part of the femur and a further anteversion of the femoral neck based upon this torsion. The sum of this change is that the adult femoral head and neck are in a plane 10-15° anteriorly oriented to the coronal plane. The proximal end of the femur consists of head, neck, greater trochanter, Lesser tochanter and intertrochantric crest (12).

Figure (1): Anatomy of proximal femur ⁽¹²⁾.

Figure (2): Femoral neck anteversion ⁽¹²⁾.

Head:

The head of the femur forms around more than half of sphere and its directed upward, medially and slightly forward to articulate with the acetabulum. The head is intracapsular and it's encircled by an acetabular labrum (12).

Neck:

It connects the head with the shaft of the femur which forms an angle between 125°-140° and it's about 5 cm in long.

In females the angle is less due to wider pelvis. Generally this unique arrangement facilities a wider range of movement to the hip joint. The anterior surface of the neck is completely intracapsular while the posterior surface only a little more than the medial half of the neck is intracapsular. The mark of the connection between the Neck and shaft anteriorly is the intertrochantric line while posteriorly it is marked by a rough edge called intertrochanteric crest (12).

Greater Trochanter:

Greater trochanter lies at the upper part of the junction between the neck and the shaft of the femur and it has a quadrangular shape. It projects upward and medially at its postero-superior portion which gives attachment near its anterior tip to the glutes minimus (12).

Lesser Trochanter:

Lesser trochanter lies at the lower part of the junction between the neck and the shaft and it's projected backwards and medially (12).

Intertrochanteric line:

It's the line that marks the junction between the neck and the shaft of the femur anteriorly. It connects with the greater trochanter above and to the lesser trochanter below. It gives attachment to ilio femoral ligament and the highest fibers of vastus lateralis arises from its upper end and the highest fibers of vastus medialis aries from its lower end (12).