Ain Shams University
Faculty of Computer and Information Sciences
Computer Science Department

Developing a Predictive Model for Message Propagation on Online Social Networks

A thesis submitted to the department of computer science, faculty of computer and information sciences, Ain Shams university, in partial fulfilment of the requirements for the degree of Doctor of Philosophy in computer and information sciences

By:

Sarah Abdelwahab Ali Elsharkawy

M.Sc. in Computer Science,
Faculty of Computer and Information Sciences,
Ain Shams University.
Cairo, Egypt

Supervised By:

Prof. Dr. Mohamed Ismail Roushdy

Head of Computer Science Department and Former Dean, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Ghada Nasr Ali Hassan

Associate Professor in Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Tarek Mohamed Nabhan

Research Director,
Research and Development Department,
ITWORX

Cairo - 2018

Abstract

In online social networks such as Twitter, tweeting allows users to share a variety of content to their own followers. As tweets are retweeted from user to user, large cascades of tweets propagation are formed. The growth of cascades over time signals the popularity or lack thereof of the subject matter. The k-core of an information graph is a common measure of a node connectedness in diverse applications. The k-core decomposition algorithm categorizes nodes into k-shells based on their connectivity. Previous research claimed that the super-spreaders are those located at the k-core of a social graph and the nodes become of less importance as they get assigned to a k-shell away from the k-core.

A meme represents an idea or a topic that spreads among users of an online social network. Current research on modelling information diffusion in social media focuses on studying retweet cascades of individual tweets independently. However, as a meme spreads, it evolves, and users adopt the meme in varying manners. While retweet cascades can model the propagation of a single piece of information among users, they are not useful in studying the propagation of the whole meme.

In this thesis, we aim to study the information diffusion from a wider perspective where the information propagation of a meme is tracked rather than individual tweets. And also, investigate the influence effect of the super-spreaders, located at the k-core, on the meme cascade growth.

First, the cascade growth of retweet cascades and the various features that govern the growth are studied. We pose the question of whether the same feature set can be used for cascade growth prediction of any dataset on Twitter. Two types of growth prediction are addressed: structural and temporal. First, a definition of structural and temporal growth is devised. Then, an approach to select the best of these features based on the dataset for better accuracy results is proposed. We present and discuss the results of the most discriminating features

in predicting cascades' growth and provide evidence that the pre-selection of features improved the accuracy of the prediction task on the datasets. Moreover, an evidence that the features governing the cascade growth vary from one dataset to another is found.

Next, we generalize the modelling of retweet cascades to a modelling of the diffusion of a meme. To construct the meme adoption graph (MAG), messages related to a meme are identified from the social network stream. Then, a recent clustering algorithm is utilized to automatically extract and cluster tweets. Next, three epidemic cascade construction models are evaluated and compared to construct the MAG and represent a meme diffusion. Also, a set of structural characteristics derived from the MAG that describe the underlying meme adoption pattern are proposed. An empirical study, using four real-world Twitter datasets, is performed to demonstrate the effectiveness of the proposed MAG.

Moreover, we work towards evaluating the influence span of the social media super-spreaders, located at the k-core, in terms of the number of k-shells that their influence is capable of reaching. Our methodology is based on the observation that the k-core size is directly correlated to the graph size under certain conditions. These conditions are explained and the correlation is utilized to assess the effectiveness of the k-core nodes for influence dissemination. The results of the carried out experiments show a high correlation between the k-core size and the sizes of the inner k-shells in the examined datasets. However, the correlation starts to decrease in the outer k-shells. Further investigations have shown that the k-shells, that were less correlated, exhibited a higher presence of spam accounts.

Finally, the effectiveness of using the k-core nodes, as seed nodes, for influence maximisation is inspected. A measure is proposed to estimate the relative strength of the k-core as an influence source among other sources of influence contributing to the cascade development. And, we propose combining that measure along with the correlation between the inner k-core size and the cascade size to determine the influence domination of the k-core nodes, and hence the effectiveness of targeting these specific nodes for influence maximization.

Publications

- Sarah Elsharkawy, Ghada Hassan, Tarek Nabhan, Mohamed Roushdy, "Studying the K-core Influence Dissemination in Twitter Cascades", The International Conference on Artificial Intelligence Applications and Innovations (AIAI). Rhodes, Greece. 2018.
- Sarah Elsharkawy, Ghada Hassan, Tarek Nabhan, Mohamed Roushdy. (2017) "Effectiveness of the K-core Nodes as Seeds for Influence Maximisation in Dynamic Cascades". International Journal of Computers, 2, 187-194.
- Sarah Elsharkawy, Ghada Hassan, Tarek Nabhan, Mohamed Roushdy, "On the Reliability of Cascade Size as a Virality Measure", Proceedings of the European Conference on Electrical Engineering and Computer Science. Bern, Switzerland. 2017.
- Sarah Elsharkawy, Ghada Hassan, Tarek Nabhan, Mohamed Roushdy, "Towards Feature Selection for Cascade Growth Prediction on Twitter", Proceedings of the 10th International Conference on Informatics and Systems (INFOS). Cairo, Egypt. 2016.
- Sarah Elsharkawy, Ghada Hassan, Tarek Nabhan, Mohamed Roushdy, "Modelling Meme Adoption Pattern on Online Social Networks", International Journal of Web Intelligence, 2018. (Pending)

Acknowledgements

My deep gratitude, appreciation and sincerest thanks go to Prof.Dr.Mohamed Roushdy, former dean of the faculty of computer and information sciences, Ain Shams University, for his guidance, assistance and advice throughout the thesis.

I would like to express my sincere gratitude to my advisor Dr.Ghada Hassan for the continuous support of my Ph.D study and related research, for her patience, motivation, and immense knowledge. Her guidance helped me in all the time of research and of writing this thesis. I could not have imagined having a better advisor and mentor for my Ph.D study.

I also would like to express my deepest appreciation and sincerest thanks to Dr.Tarek Nabhan for proposing the idea of this thesis and providing continuous constructive feedback from an industrial perspective. He is always committed to provide his guidance in a very short time. His fruitful discussions guided me from the first day in this thesis.

Besides my advisors, I would like to thank Prof.Dr.Abdelbadie Salem who provided me with an opportunity to publish a research paper in an international scientific journal.

Last but not the least, I would like to thank my family: my husband, my two beloved daughters and my parents for supporting me spiritually throughout writing this thesis and my life in general.

Contents

1	Intr	oduction
	1.1	Overview
	1.2	Problem Definition and Motivation
	1.3	Contributions
	1.4	Graphs and Notations
	1.5	Thesis Outline
2	Rev	ew of Literature
	2.1	Information Diffusion and Prediction of Message Propagation 13
	2.2	Influential Spreaders and Influence Maximisation
	2.3	Cascade Modelling and Meme Identification
	2.4	Multiple Sources of Influence and Spam
3	Dat	Collection and Dataset Description 2
	3.1	Twitter API methods
		3.1.1 Collecting Tweets
		3.1.2 Collecting the Retweeters of a Tweet
		3.1.3 Collecting a User's Information
		3.1.4 Collecting the Followers of a User
	3.2	Further details
	3.3	Twitter Crawling for Dataset Collection
	3.4	Datasets Description
		3.4.1 Collected Tweets
		3.4.2 Collected Retweets
		3.4.3 Collected Users
		3.4.4 Collected User Followers
	3.5	Challenges in the Dataset Collection
4	Cas	ade Growth Prediction 39
	4.1	Problem Definition

CONTENTS

	4.2		de Growth Definition	41
		4.2.1	Cascade Growth Features	42
	4.0	4.2.2	Feature Selection Approach	44
	4.3	_	iments	46
	4.4		S	47
		4.4.1	Size Growth Prediction	48
	4 -	4.4.2	Temporal Growth Prediction	49
	4.5	Discus	sion and Conclusion	51
5	Mer	ne Cas	scade Modelling	5 3
	5.1	Proble	em Formulation	55
		5.1.1	Memeprints: Identifying a Meme	55
		5.1.2	Modelling Meme Adoption	57
	5.2	Meme	Adoption Graph (MAG)	59
		5.2.1	Susceptible-Infected (MAG_{SI})	59
		5.2.2	Susceptible-Infected-Recovered (MAG_{SIR})	60
		5.2.3	Susceptible-Infected-Susceptible (MAG_{SIS})	60
		5.2.4	Evaluation of the three models	62
	5.3		cteristics of Meme Adoption Pattern	62
		5.3.1	Comprehensive Properties of MAGs	62
		5.3.2	Distributional properties of MAG nodes	64
	5.4		Study and Results	65
		5.4.1	RC Model Vs. MAG	65
		5.4.2	Meme Adoption Pattern: Structural Properties of MAGs .	66
		5.4.3	Meme Adoption Pattern: Distributional properties of meme	
			adopters	69
		5.4.4	Meme Adoption Pattern: Tracking of MAGs	70
	5.5	Summ	ary and Conclusion	76
6	The	K-cor	e Influence Dissemination	77
	6.1	Relatio	onship Between K-core Size and Graph Size	79
		6.1.1	Conditions for the Presence of Correlation	80
		6.1.2	Correlation on Synthetic Graphs	80
		6.1.3	Focusing on Synthetic Scale-Free Power-Law Degree Graphs	86
		6.1.4	DD Similarity in Real-life Dynamic Cascades	87
	6.2	Experi	iments and Results	89
		6.2.1	Correlation on Twitter Datasets	89
		6.2.2	The Spam Effect on the Correlation	90
		6.2.3	Simulation of Crowd-Turfing	92
	6.3	Discus	sion and Conclusion	95

7	Influ	uence l	Maximisation in Dynamic Cascades	97
	7.1	The E	ffectiveness of the k_d -core as an Influence Source	98
	7.2	Experi	iments and Results	100
		7.2.1	Evaluating the k_d -core as an Influence Source	101
		7.2.2	The Spam Effect as an External Source of Influence	
	7.3	Discus	sion and Conclusion	
8	Sun	nmary	and Conclusions	105
	8.1	Summ	ary	105
	8.2	Conclu	isions	106
		8.2.1	Predicting the Retweet Cascade Growth	106
		8.2.2	Modelling the Meme Cascade	107
		8.2.3	Evaluating the Influence Effect of the K-core users on the	
			Meme Cascade Growth	107
	8.3	Future	e Work	108
		8.3.1	Enriching MAGs with Sentiment	108
		8.3.2	Prediction of MAG Growth	108
		8.3.3	Weighting Influence Effectiveness of Nodes	109
		8.3.4	Early Prediction of Spam	
\mathbf{A}	Pyt	hon Co	oding for Graphs	127
	A.1	Gephi:	Graph Visualization Software	127
	A.2		rkX	
		A.2.1	Reading Graphs	
		A.2.2	Writing Graphs	
		A.2.3	Creating Graphs	
		A.2.4	Graph Properties	
		A.2.5	Random Graphs	
	A.3	Correla	ation Between K-core Size and K-shell Size in Python	

CONTENTS

List of Tables

3.1	Crawling Details	29
3.2	Samples of Tweets from Tsunami	30
3.3	Samples of Tweets from Royal Baby	31
3.4	Samples of Tweets from Tamarod	32
3.5	Samples of Tweets from Tagarod	33
3.6	Samples of Retweets	34
3.7	Samples of user profiles	35
3.8	Samples of user followers	37
4.1	List of Content features	42
4.2	List of author features	43
4.3	List of retweeters features	44
4.4	List of structural features	44
4.5	List of temporal features	45
4.6	Structural Growth Prediction Results of <i>Tamarod</i>	49
4.7	Structural Growth Prediction Results of Tagarod	49
4.8	Temporal Growth Prediction Results of <i>Tamarod</i>	51
4.9	Temporal Growth Prediction Results of Tagarod	51
5.1	Graphical properties of RC and MAG on Tagarod dataset	67
5.2	Structural properties of MAGs on the four datasets using SI model	
	of epidemics.	68
5.3	Snapshots of the MAG_{SI} , MAG_{SIR} , and MAG_{SIS} on the first,	
	fourth and eighth day of the <i>Tagarod</i> dataset respectively	71
6.1	Graphs of different degree distributions and their k-cores	82
6.2	Graphs of different degree distributions and their k-cores	83
6.3	Graphs of different degree distributions and their k-cores	84
6.4	Graphs of different degree distributions and their k-cores	
6.5	Synthetic graphs grouped based on power-law exponent of node DD.	87

6.6	Mean and standard deviation of the exponent for the fitted power-
	law curve of the node degrees of the snapshots taken for each dataset. 90
6.7	Spearman's correlation coefficients (r_s) between k_d -core size and
	graph size of each dataset
6.8	Spearman's correlation coefficients between k_d -core size and each
	outer k-shell size measured on all snapshots of each dataset 91
6.9	Spearman's Correlation Coefficients between k_d -core size and the
	MAG_{SIS} size. The number of fake tweets injected is a percentage
	value of the cascade size of the first snapshot in each dataset 94
7.1	Spearman's correlation coefficients (r_s) between the k_d -core size
	and the cascade size, and the average percentage ratio (S) of k_d -
	core successors of each dataset
7.2	The percentage of spam accounts and their successors present in
	the datasets

List of Figures

1.1	A graph consisting of 6 nodes and 7 edges	6
1.2	Clustering Coefficient (C) of Purple Node	7
1.3	(a) A binomial degree distribution of a network with 10,000 nodes	
	and average degree of 10. (b) A power law degree distribution of	
	a network with 10,000 nodes and average degree of around 7	8
1.4	k-core Decomposition Analysis	9
1.5	The yellow node has a high betweenness centrality, and acts as a bridge between subgroups in the network. This figure is taken	
	from http://www.knicecreative.com/tag/degree-centrality/	9
1.6	Graphical representation of a network with five communities and	
	a high modularity.	11
r 1	A 1:, , C,1 , , 1 ,	F.C
5.1	Architecture of the tweets clustering approach	56
5.2	Retweet cascades for tweets $T_{u_0}(m_i), T_{u_1}(m_i), \ldots, T_{u_5}(m_i), \ldots$	58
5.3	Tagarod dataset modelled at the end of the meme tracking period.	
	The MAG_{SI} model on the left vs. the RC model on the right	67
5.4	Probability distribution of the difference between out-degree and	
	in-degree of nodes of the four datasets	72
5.5	Probability distribution of the clustering coefficients of the four	
	datasets	73
5.6	Probability distribution of the normalized betweenness centrality of the four datasets	74
5.7	Monitoring the evolution of the number of nodes in MAGs. A	
	comparison between the SI, SIR, and SIS models	74
5.8	Monitoring the evolution of the average node degree in MAGs. A comparison between the SI, SIR, and SIS models	75
5.9	Monitoring the evolution of the graph diameter in MAGs. A com-	
	parison between the SI, SIR, and SIS models	75