

STUDIES ON HIGH PERFORMANCE NON-CONVENTIONAL BUILDING MATERIALS CONTAINING SOME SOLID WASTES

A Thesis Presented by

Omaima Mohamed El-Morsy Zarad

(M.Sc. in Environmental Science, 2009)

As

A partial fulfillment for the Ph.D. Degree. in Environmental Science

To

Department of Environmental Basic Science
Institute of Environmental Studies & Research
Ain Shams University

APPROVAL SHEET

STUDIES ON HIGH PERFORMANCE NON-CONVENTIONAL BUILDING MATERIALS CONTAINING SOME SOLID WASTES

Submitted By

Omaima Mohamed El-Morsy Zarad

B.Sc. of Science (Chemistry), Faculty of Science, AL-Azhar University, 1984 Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2009

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences
Department of Environmental Basic Sciences

This Thesis Towards a Doctor of Philosophy Degree in Environmental Sciences Has been Approved by:

Name

Signature

1-Prof. Dr. Salah A. Abo-El-Enein (D.Sc)

Prof. of Physical Chemistry and Building Materials Faculty of Science Ain Shams University

2-Prof. Dr. Mahmoud Farag Mahmoud Zawrah

Prof. of Materials Chemistry and Nanotechnology National Research Center

3-Prof. Dr. Nehal Atef Salahuddin

Prof. of Physical Chemistry and Material Science Faculty of Science Tanta University

2018

STUDIES ON HIGH PERFORMANCE NON-CONVENTIONAL BUILDING MATERIALS CONTAINING SOME SOLID WASTES

A Thesis Submitted as a partial fulfillment for requirements of Ph.D. degree in Environmental Science

Presented by

Omaima Mohamed El-Morsy Zarad

Under Supervision of

Prof. Dr. Salah Abdel-Ghani Abo-El-Enein (D. Sc.)

Prof. of physical chemistry and building materials, faculty of Science, Ain Shams University.

Prof. Dr. Tarek Amin Osman

Prof. of physical chemistry and building materials, Housing and Building National Research Center (HBRC).

Dr. Hesham Mustafa Khater

Assoc. Prof. of physical chemistry and building materials, Housing and Building National Research Center (HBRC).

Dr. Safaa Mohamed Awwad El Gamal

Assoc. Prof. of physical chemistry, Faculty of Science, Ain Shams University.

STUDIES ON HIGH PERFORMANCE NON-CONVENTIONAL BUILDING MATERIALS CONTAINING SOME SOLID WASTES

A Thesis Submitted as a partial fulfillment for requirements of Ph.D. Degree in Environmental Science

Presented by

Omaima Mohamed El-Morsy Zarad M.Sc. in Environmental Science (2009)

Under Supervision of

Prof. Dr. Salah Abdel-Ghani Abo-El-Enein (D. Sc.)

Prof. Dr. Tarek Amin Osman

Dr. Hesham Mustafa Khater

Dr. Safaa Mohamed Awwad El Gamal

Head of Environmental Basic Science Department

Prof. Dr. Hala Abd-El-Hameed Kasem

Dedication To My Fathers Soul and to My Mother to all my Family

ACKNOWLEDGMENT

First and foremost, I would like to thank **Allah** for giving me the opportunity and the strength to accomplish this work.

I would like to express my deep gratitude to **Prof. Dr. S. A. Abo-El-Enein** (**D.Sc.**) Prof. of Physical Chemistry and Building Materials, Faculty of Science, Ain Shams University. He was always kind enough to suggest of this study and interpretation of the results obtained during the Couse of this study, and valuable comments and whose efforts made this humble work a success.

I am deeply indebted to **Prof. Dr. Tarek Amin Osman** Prof. of physical Chemistry and Building Materials, Housing and Building National Research Center, for his valuable advice and constructive criticism throughout the thesis.

I am deeply indebted to **Dr. Hesham Mustafa Khater** Assoc. Prof. of physical Chemistry and Building Materials, Housing and Building National Research Center, for his valuable assistance, guidance and continuous help during the progress of the work.

Special thanks to **Dr. Safaa Mohamed Awwad El Gamal** Assoc. Prof. of physical Chemistry, Chemistry Department, Faculty of Science, Ain shams University, for her valuable assistance, guidance and continuous help during the progress of the work.

Finally, I send special thanks and dedicate this work to my mother and my family for the gift of years of support, tolerance and patience. So, I ask my God to aid me to restore even some of them efforts.

Omaima Zarad

LIST OF ABBREVIATIONS

Symbol	<u>Description</u>
OPC	Ordinary Portland cement
GGBFS	Ground granulated blast-furnace slag
CKD	Cement kiln dust
NK	Nano-kaolin
NMK	Nano metakaolin
RHA	Rice-husk-ash
SF	Silica fume
C_3S	Tricalcium silicate (Alite)
β-C ₂ S	β-dicalcium silicate (Belite)
C-S-H	Calcium silicate hydrate
СН	Calcium hydroxide
XRD	X-ray diffraction
TGA	Thermogravimetric analysis
SEM	Scanning electron microscope

ABSTRACT

The object of this investigation is to study the possible production of autoclaved building products using several industrial solid wastes, produced as by-products from certain industries, as pozzolanic materials activated by two alkaline activators. The alkaline activators used are cement kiln dust (CKD) (the solid waste produced from cement industries using the "dry process") and hydrated lime [Ca(OH)₂]. The pozzolanic materials used in this investigation are ground granulated blast-furnace slag (GGBFS) (the solid waste produced from big iron industries), rice husk ash (RHA) (as a source of active silica obtained by burning of rice husk), nano-metakaolin (NMK) (as an active pozzolanic material obtained by burning of nano-kaolin followed by activation at 800 °C) and silica fume (SF) (as a sort of nano-silica obtained from silicon and ferro-silicon industries) where it condensed from the exhaust gases in the electric arc furnace during reduction of quartz).

Several dry mixtures were prepared and subjected to steam under hydrothermal conditions in the autoclave at a pressure of 8 atmospheres of saturated steam for different curing ages of 0.5, 2, 6, 12 and 24 hours. The autoclaved specimens were examined for their mechanical properties (compressive strength test) and the crushed samples were ground for other physico-chemical studies; where they are characterized using X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA/DTGA) and scanning electron microscopy (SEM) as well as kinetics of hydration via the determination of chemically combined water (Wn., %) and free lime contents at different autoclaved ages. From the results obtained it was found that the autoclaved products obtained from the pastes made of mixes F1 [(60 % GGBFS - 40 % CKDusing 5 % silica fume as an additive) and F2 [(60 % GGBFS - 40 % CKDwith10 % silica fume as an additive. Therefore, the autoclaved products obtained from these mixes possess higher mechanical properties and improved physico-chemical characteristics as compared to other autoclaved mixes. The main conclusions derived from the results of this investigation revealed that these autoclaved mixes (F1 and F2) represent the optimum constitution of autoclaved building products obtained from the wastes solid industrial.

Keywords: Ground granulated slag, Fly ash, Pozzolanic reaction, Cement Kiln dust, Nano-metakaolin.

CONTENTS

	pag
ABBREVIATIONS	. I
ABSTRACT	
CONTENTS	III
LIST OF TABLES	. X
LIST OF FIGURES	XII
CHAPTER I	
INTRODUCTION AND OBJECT OF INVESTIGATION	
IA. INTRODUCTION	1
IB. OBJECT OF INVESTIGATION	. 19
CHAPTER II	
MATERIALS AND EXPERIMENTAL TECHNIQUES	
IIA. Starting Materials and Preparation of the Hardened Cement	
Pastes	20
IIA.1. Starting Materials	20
IIA.1.1. Ground granulated blast-furnace slag (GGBF)	20
IIA.1.2. Cement kiln dust (CKD)	21
IIA.1.3. Nano metakaolin (NMK)	22
IIA.1.4. Silica fume (SF)	23
IIA.1.5. Kaolinite sand (KS)	23
IIA.1.6. Rice Hask Ash (RHA)	23
IIA.1.7. Hydrated lime (CH)	24 24
IIA.2.1. Moulding.	26
IIA.2.2. Curing	26
IIB. Methods of Physicochemical Measurements	26
II.B.1.Compressive strength determination	26

II.B.2. Kinetics of hydration.	26
II.B.2.1. Determination of chemically combined water content	27
(Wn %)	
IIB.3. Phase composition.	28
IIB.3.1. X-ray diffraction analysis (XRD)	. 28
IIB.3. 2.Thermogravimetric analysis (TGA)	. 29
IIB.3.3. Scanning electron microscope (SEM)	29
CHAPTER III	
RESULTS AND DISCUSSION IIIA. Physico-mechanical Characteristics, Phase Composition an	d
Microstructure of Autoclaved Specimens Made of Mix A	.0 30
IIIA.1. Physico-mechanical characteristics of autoclaved specimens made of mix A0.	30
III.A.2. Phase composition of autoclaved specimens made	
of mix A0	32
III.A.2.1. X-ray diffraction (XRD) analysis	32
III.A.2.2. Thermogravimetric analysis (TGA)	32
IIIB. Physico-mechanical Characteristics and Microstructure of Autoclaved Specimens Made of Mix A1	243434
made of mix A1	34
specimens made of Mix A1	37
III.C. Physico-mechanical Characteristics, Phase Composition and	
Microstructure of Autoclaved Specimens Made of Mix A2	37
IIIC1. Physico-mechanical characteristics of autoclaved specimens made of mix A2	37 39
IIIC.2.1. X-ray diffraction (XRD) analysis	39
IIIC.2.2. Thermogravimetric analysis (TGA)	41

IIIA.2.2.3. Scanning electron microscopy (SEM) investigation 4 IIIC.3. Scanning electron microscopy investigation of autoclaved specimens made of mix A2	
IIID. Physico-mechanical Characteristics Phase Composition and Microstructure of Autoclaved Specimens Made of Mixes	т1
B1and B2	4
IIID.1.1.Physico-mechanicalcharacteristics of autoclaved specimens	
made of mix B1	44
IIID.1.2. Scanning electron microscopy investigation of autoclaved specimens made of mix B1	46
microstructure of autoclaved specimens made of mix B2 4	7
IIID.2.1. Physico-mechanical characteristics of autoclaved specimens	,
•	47
	+ /
	49
1	50
IIIE. Physico-mechanical Characteristics, Phase Composition and Microstructure of Autoclaved Specimens Made of Mixes C1	
IIIE.1.1. Physico-mechanical characteristics of autoclaved specimens	51
made of mix C1	51
specimens made of mix C1	53
Microstructure of Autoclaved Specimens Made of Mix C2 5. IIIE.2.1.Physico-mechanical characteristics of autoclaved specimens	4
made of mix C2	54
IIIE.2.2. Phase composition of autoclaved specimens made of mix C2.5	
IIIE.2.2.1. X-ray diffraction analysis	54
	50
IIIE.2.3. Scanning electron microscopy investigation of autoclaved	
specimens made of mix C2	56
IIF. Physico-mechanical Characteristics, Phase Composition and	
Microstructure of Autoclaved Specimens Made of Mixes D1 and D2	59
IIIF.1.1. Physico-mechanical characteristics of autoclaved specimens made of mix D1	59

IIIF.1.2. Scanning electron microscopy investigation of autoclaved specimens made of mix D1]	61
IIIF.2. Physico-mechanical Characteristics, Phase Composition and	01
Microstructure of Autoclaved Specimens Made of mix D2	62
IIIF.2.1.Physico-mechanical characteristics of autoclaved	02
•	62
Specimens made of mix D2.	02
IIIF.2.2. Thermogravimetric analysis of autoclaved specimens made	5. /
of mix D2.	<i>1</i> 4
IIIF.2.3. Scanning electron microscopy investigation of autoclaved	<i>(</i> 7
specimens made of mix D2	65
IIIG. Physico-mechanical Characteristics, Phase Composition	
and Microstructure of Autoclaved Specimens Made of mixes	
E1and E2	66
IIIG.1.1. Physico-mechanical characteristics of autoclaved specimens	
made of mix E	66
IIIC 1.2 Saanning alastron microscopy investigation of autoalayed	
IIIG.1.2. Scanning electron microscopy investigation of autoclaved	6 0
specimens made of mix E1	68
IIIG.2. Physico-mechanical Characteristics, Phase Composition	<i>(</i> 0
and Microstructure of Autoclaved Specimens Made of mix E2	69
IIIG.2.1.Physico-mechanical characteristics of autoclaved specimens	60
made of mix E2	69
IIIG.2.2.Thermogravimetric analysis of autoclaved specimens made	
of mix E2	69
IIIG.2.3. Scanning electron microscopy investigation of autoclaved	
specimens made of mix E2	72
IIIH. Physico-mechanical Characteristics Phase Composition and	, _
Microstructure of Autoclaved Specimens Made of Mixes F1	
and F2	72
IIIH.1.1.Physico-mechanical characteristics of autoclaved specimens	12
made of mix F1	72
	12
IIIH.1.2. Scanning electron microscopy investigation of autoclaved	71
r	74
IIIH.2. Physico-mechanical characteristics, phase composition and	7.5
\mathbf{r}	75
IIIH.2.1.Physico-mechanical characteristics of autoclaved specimens	
made of mix F2	. 75
IIIH.2.2.Thermogravimetric analysis of autoclaved specimens	
made of mix F2	. 72
IIIH.2.3. Scanning electron microscopy investigation of autoclaved	
specimens made of mix F2	78

CHAPTER IV

SUMMARY AND CO IV.A. Summary	 79
•	 80
REFERENCES	 82
ARABIC SUMMARY	

LIST OF TABLES

Table No	o. p	age
Table (1):	Chemical oxide composition of GGBFS	20
Table (2):	Chemical oxide composition of CKD	21
Table (3):	Major oxides composition of nano-kaolin and nano-metakaolin.	23
Table (4):	Chemical oxide composition of Kaolinite sand	24
Table (5):	Percentage composition of different investigated mixes and their designation	25
Table (6):	Physico-mechanical characteristics of autoclaved specimens made of mix A0 (80 % GGBFS - 20 % Lime).	31
Table (7):	Physico-mechanical characteristics of autoclaved specimens made of mix A1 (50 % GGBFS – 20 % Lime – 30 % Sand)	36
Table (8):	Physico-mechanical characteristics of autoclaved specimens made of mix A2 (30 % GGBFS – 20 % lime–50 % sand)	40
Table (9):	Physico-mechanical characteristics of autoclaved specimens made of mix B1 [(80 % GGBFS - 20 % lime - 5 % RHA].	45
Table (10):	Physico-mechanical characteristics of autoclaved specimens made of mix B2 [(80 % GGBFS - 20 % lime - 10 % RHA]	48
Table (11):	Physico-mechanical characteristics of autoclaved specimens made of mix C1 [(80 % GGBFS - 20 % lime - 5 % NMK]	52
Table (12):	Physico-mechanical characteristics of autoclaved specimens made of mix C2 [(80 % GGBFS - 20 % lime - 10 % NMK]	55
Table (13):	Physico-mechanical characteristics of autoclaved specimens made of mix D1 [(70 % GGBFS - 30 % CKD - 5 % RHA]	60

Table (14):	Physico-mechanical characteristics of autoclaved specimens made of mix D2 [(70 % GGBFS - 30 % CKD - 10 % RHA].	63
Table (15):	Physico-mechanical characteristics of autoclaved specimens made of mix E1 [(70 % GGBFS - 30 % CKD - 5 % NMK].	67
Table (16):	Physico-mechanical characteristics of autoclaved specimens made of mix E2 [(70 % GGBFS - 30 % CKD - 10 % NMK]	70
Table (17):	Physico-mechanical characteristics of autoclaved specimens made of mix F1 [(60 % GGBFS - 40 % CKD - 5 % SF]	73
Table (18):	Physico-mechanical characteristics of autoclaved specimens made of mix F2 [(60 % GGBFS - 40 % CKD - 10% SF]	76