

"Human Dental Pulp Stem Cell Proliferation and Maintenance in Xeno Free/Serum Free Defined Culture Media (in Vitro Study)"

Research project submitted to the Faculty of Dentistry Ain Shams University, for registration for the Degree of Masters in Oral Biology, Faculty of Dentistry, Ain Shams University.

By

Esraa Mohamed Abdel Moniem

Researcher Assistant
Basic Dental Science Department
National Research Centre
B.D.S Faculty of Dentistry, Misr International University, 2012
E-mail: esraamoh267@gmail.com
Phone: 01001542375

Supervisors

Prof. Dr. Ahmed Mahmoud Halawa

Professor and Head of Oral Biology Department Faculty of Dentistry, Ain Shams University

Prof. Dr. Mona Mahmoud EL- Batran

Professor of Dental Anthropology Basic Dental Science Department National Research Centre

Dr. Dina Hazem Hassan Gomaa

Lecturer of Oral Biology Faculty of Dentistry, Ain Shams University

Dr. Riham Mohamed Aly El Saied

Researcher Basic Dental Science Department National Research Centre

Faculty of Dentistry
Ain Shams University
2019

Abstract

Background: Dental pulp stem cells (DPSCs) are considered an easily accessible source of mesenchymal stem cells which hold great promise for use in tissue repair and regenerative medicine. Routinely, culture media used for culturing stem cells are supplemented by animal serum for promoting growth and successful maintenance of stem cells. Although, fetal bovine serum (FBS) is now considered a universal growth supplement effective for almost all types of human and animal cells, it still bears a number of disadvantages. Thus, there is a growing demand for optimizing a welldefined culture media that could safely increase the efficacy and reproducibility of the cultured cells especially when clinical applications are intended. Objective: In this research, we aimed at optimizing a defined culture medium enriched by a various supplements that is capable of enhancing DPSCs proliferation and maintenance. **Methods:** various to enrich DPSCs proliferation supplements intended defined concentrations were designed such as recombinant human Basic Fibroblast Growth Factor (hBFGF), Insulin Transferrin Selenium (ITS), Ascorbic acid, Beta mercaptoethanol and Cholesterol. The effect of this optimized media on the proliferation of DPSCs was assessed by MTT assay and expression of stemness-related genes (OCT4, SOX2 and NANOG) was analyzed by qRt-PCR. Results: Proliferation results by MTT illustrated a significant increase in the proliferation rate of DPSCs cultured in the proposed culture media. Expression of OCT4, SOX2 and NANOG genes was also up-regulated, confirming that the proposed combination of supplements not only increased of DPSCs the proliferation potential but also enhanced stemness properties. Conclusions: Taken together, our results indicate that proposed optimized media is safe and efficient and can readily substitute traditional animal derived supplements like FBS.

Acknowledgement

All thanks and praise to God, who guided and enabled me to fulfill this thesis.

I'd like to express my deep gratitude and appreciation to **Prof. Or Ahmed Mahmoud Halawa** Head of Oral Biology Department-Faculty of Dentistry, Ain Shams University. Dr Ahmed, you have helped and supported me greatly. No words can express my deep appreciation and gratitude for your incredible support and understanding.

I am forever indebted to my mentor **Prof. Dr. Mona**Mahmoud El Batran professor of dental anthropology at

Basic Dental Science Department National Research

Centre whose help, stimulating suggestions and

encouragement helped me in all the time of research and

writing of this thesis. I can't thank her enough.

I would like to thank **Dr Dina Hazem Hassan**, lecturer of Oral Biology -Faculty of Dentistry, Ain Shams University, for her effort, time and indeed valuable advice during all the different stages of this work.

I am also so grateful to **Dr Riham Mohamed Aly** researcher at Basic Dental Science Department National Research Centre, x who assisted me generously and for her extremely precious help, continuous support during all the different stages of this work.

I owe a great debt of gratitude and appreciation to **Prof. Dr. Medhat A. El-Zainy** Professor of Oral Biology and Former vice Dean of Society and Environmental

Affairs Faculty of Dentistry, Ain Shams University. From the very first year as students Professor Medhat has introduced us to the world of dentistry, he has been a source of encouragement, sound advice, fatherly guidance and support.

I would like to thank the entire staff of Oral Biology Department Ain Shams University for their cooperation and also my deepest thanks to my colleagues and staff of the Basic Dental Science Department at the National Research Centre.

Dedication To my Family

Contents

Subject	Pa
INTRODUCTION AND REVIEW OF LITERATURE	N ₀
Classification of stem cells	1
Characteristics of mesenchymal stem cells	3
Types of dental stem cells	3
Alternatives to FBS	7
I-Media supplemented with human blood derivatives types	7
II-Chemically defined media	1
Approaches for culturing DPSCs in serum free media	1:
Adaptaion of DPSCs in serum free media	1
Optimization of serum free media	1
AIM OF THE STUDY	2
MATERIALS AND METHODS	2
1-Sample collection	2
2-Cell isolation and culture	2
3-Assessment of cell viability	2
4-Assesment of cell proliferation via MTT assay	2
5-Assessment of stemness properties in experimental group	2
6-Statistical Analysis	2
RESULTS	3
1-Isolation and Characterization of stem cells	3
2-Assesment of cell viability	3
3-Assesment of cell proliferation via MTT assay	3

4- Assessment of stemness	37
DISCUSSION	41
CONCLUSION	49
SUMMARY	50
REFERENCES	51

List of Figures

Figure	e Title	Page No.		
Figure 1 illustrating Adaptation of cultures to serum-free medium. A comparison of the most common adaptation protocols (FBS: fetal bovine serum and SFM: serum -free medium)				
	2 Illustrating Countess II ogen, USA)	FL automated cell counter25		
Figure 3	Schematic chart summarizing the method	lology followed in this research		
Figure 4	4 photomicrographs illustrating isolated started forming colonies at day 3 in group	DPSCs having spindle appearance which ps 1, 2, 3 &4.(Magnification 100x) 31		
Figure 5		DPSCs showing rapid proliferation and 2, 3 & 4. (Magnification 100x) 31		
Figure 6		DPSCs approaching confluence at day 7 in		
Figure 7	groups 1, 2, 3 & 4 with greatest confl	DPSCs established confluence at day 14 in luence in those of group 4. (Magnification		
Figure 8	Cell count in the four groups after the firs	st week		
Figure 9	Cell count in the four groups after the sec	cond week		
Figure 10	0 Flow Cytometry Analysis of <i>Annexin V</i>	in group 1		
Figure 1	1 Flow Cytometry Analysis of <i>Annexin V</i>	in Group 2		
Figure 12	2 Flow Cytometry Analysis of <i>Annexin</i> V	in Group 3		
Figure 13	$\bf 3$ Flow Cytometry Analysis of Annexin V	in Group 4		
Figure 14	4 MTT assay of DPSCs in groups 1, 2, 3 &	&4 on days 3, 7 &14 ($P \le 0.05$) 36		
Figure15		the four study groups (groups1, 2, 3 &4) on		
Figure 1		of CD 105, CD 90 and CD 34 in group 1 0 90 (a,b) and -ve expression of CD 34(c)37		
Figure 1		y of CD 105, CD 90 and CD 34 in group 2 0 90 (a,b) and -ve expression of CD 34(c)38		
Figure 1		of CD 105, CD 90 and CD 34 in group 3 0 90 (a,b) and -ve expression of CD 34(c)38		
Figure 1		y of CD 105, CD 90 and CD 34 in group 4 0 90 (a,b) and -ve expression of CD 34(c)39		
FIGURE 2		gene expression of DPSCs in groups 1, 2, 3		

Abbreviations and Symbols

AbbreviationFull nameAlaAlanineArgArginineAsnAsparagineAspAspartic acid

bFGF basic fibroblast growth factor

BSA Bovine serum albumin
CD Chemically defined
CFU Colony forming unit
Ct Cycle threshold

Cu Copper Cys Cysteine

DFSCs Dental Follicle Stem Cells

DMEM Dulbecco modified Eagle medium

DPSCs Dental pulp stem cells **EGF** epidermal growth factor

FACS Fluorescent activated cell sorting

FBS Fetal Bovine Serum

Fe Fe

FGF Fibroblast growth factor **GAPDH** Glyceraldehyde 3-phosphate

dehydrogenase

Gln Glutamine
Glu Glutamic acid
Gly Glycine

hES human embryonic stem cells
HGF hepatic growth factor

His Histidine

hMSCs human mesenchymal stem cells

hPL human platelet lysate

hs human serum

hUCBS umbilical cord blood serum insulin growth factor-1 insulin growth factor-2

Ile Isoleucine

iPS cellsinduced pluripotent stem cellsITSInsulin Transferrin Selenium

Leu Leucine

Lys Lysine Methionine

MSCs Mesenchymal stem cells

MTT 3(-4,5-dimethylthiazol-2-yl)2,5

diphenyltetrazolium bromide).

P0 passage zero

PBS phosphate buffer solution
PCR polymerase chain reaction
PDGF platelet-derived growth factor
PDLSCs Periodontal Ligament Stem Cells

Phe Phenylalanine PI propidium iodide

Pro Proline

qRt-PCR Quantitative real time PCR

Res relative expressions

REST Relative expression software tool SCAPs Stem Cells from the dental Apical

Papilla

SCC supplement for cell culture

Se Selenium

SEM standard error of the mean

Ser Serine

SFM Serum Free Medium

SHEDs Human Exfoliated Deciduous teeth

SSM Serum supplemented media

T3 triiodothyronine

TGF-β1 transforming growth factor-βeta1

Thr Threonine
Trp Tryptophan
Tyr Tyrosine
Val Valine

VEGF vascular endothelial growth factor

Zn Zinc

ΔΔCT Delta cycle threshold

Introduction and Review of Literature