سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Analytical studies on the determination of some organic pollutants and possibility of their removal from polluted food

Presented by

El-Shaimaa Ali Abdel Hafez Ali, M.Sc. (2016)

A Thesis Submitted

To Faculty of Science

In Partial Fulfillment of the Requirements for the Degree of Ph.D. In Chemistry (Analytical Chemistry)

> Chemistry Department Faculty of Science Ain Shams University

> > (2019)

Ain Shams University Faculty of Science Department of Chemistry

Abstract

Thesis Title: Analytical studies on the determination of some organic

pollutants and possibility of their removal from polluted food

Name of candidate: El-Shaimaa Ali Abdel Hafez Ali

Degree: Ph.D. in chemistry (analytical chemistry)

The aim of present study was to suggest method of extraction and analysis of the studied organic pollutants (polycyclic aromatic hydrocarbons (PAHs)) with assessment of their contamination levels in some Egyptian food products and to investigate the possibility of their elimination or suppression using natural food additives. In the first part of this study, a full factorial 2³ was employed in order to optimize the extraction conditions of the studied PAHs. Two comparative extraction methods were chosen for PAHs extraction including ultra-sonication assisted extraction and quechers extraction. Application of optimized extraction method on commercial food samples using gas chromatography-tandem mass spectrometer (GC/MS MS) for quantification. The second part was also assessed the human health hazards effects of studied PAHs at different age categories. The third and fourth parts of this study included treatment of the investigated PAHs polluted food using natural food additives. Different factors were optimized to get acceptable removal efficiency. Characterization and bioactive screening of the extracted natural food additives were also carried out. The obtained data revealed that PAHs levels in the analyzed food samples were reached to 8.3 µg/g for dairy based products and 387 ng/g for potato chips. The removal efficiency of PAHs using natural food additives enhanced to be 96% for potato chips and 80% for milk samples.

Keywords: polycyclic aromatic hydrocarbons, factorial design, quechers, removal efficiency

Supervisors:

1- Prof. Dr. Eglal. R.Souaya

Chemistry Department, Faculty of Science Ain Shams University

2- Prof. DrGehad.G.Mohamed

Chemistry department, Faculty of Science, Cairo University

3- Dr. Lilly.H.Khalil

Chemistry Department, Faculty of Science Ain Shams University

4- Dr.Mohamed.H.El-Gammal AgriculturalResearchCenter

Prof. Dr. Chairman of chemistry department Prof. Dr. Ibrahim .H.Badr

Signature

5- Dr. Ghadir .A. El-Chaghaby Agricultural Research Center

Acknowledgment

First and foremost, praise and thanks to **ALLAH** for his limitless help and guidance and peace be upon his **Prophet**.

I express my deep thanks, ultimate appreciation, gratitude and respect to my supervisor **Prof. Dr. Eglal R. Souaya**, a professor of Analytical Chemistry, Faculty of Science, Ain Shams University, for her kind supervision.

I express my deep thanks, ultimate appreciation, gratitude and respect to my supervisor **Prof. Dr. Gehad G. Mohamed**, a professor of Inorganic and Analytical Chemistry, Faculty of Science, Cairo University, for his kind supervision, valuable advices, guidance and continuous help, support and encouragement.

Thanks must also go to **Dr. Lilly H. Khalil**, Associated professor, of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University, for her kind supervision.

I also wish to express my appreciations to **Dr. Ghadir Aly El-Chaghaby** and **Dr. Mohamed H .El-gammal**, Senior Researchers, Regional Center for Food and Feed, Agricultural Research Center, for their kind supervision, for their valuable advices, help and encouragement.

My gratitude, appreciations and love to all **my family especially my parents and my husband** for their efforts, help and support throughout the time of working and preparing this thesis.

El shaimaa Ali Abdel Hafez Ali

Published from Thesis

1-Title ofarticle:

Distribution and Health hazards of Polycyclic Aromatic Hydrocarbons in Egyptian milk and dairy-based products.

<u>Authors</u>: Gehad, G. Mohamed, Eglal, R.Souaya, Lilly, H.Khalil El-Shaimaa, A.Rawash, Ghadir, A.El-Chaghaby and Mohamed, H.El-Gammal.

<u>Journal</u>:Beverages **2018**, 4, 63 Published online September 2018.

2-Title of article:

Optimization and Validation of an Extraction Method for the Analysis of Polycyclic Aromatic Hydrocarbons in Potato chips using gas chromatography -mass spectrometry

<u>Authors</u>: Gehad, G. Mohamed, Eglal, R.Souaya, El-Shaimaa, A.Rawash, Ghadir, A.El-Chaghaby

<u>Journal</u>: Research Journal of Chemistry and Environment, Vol. 23 (1) January (2019)

Published online December 2018 in Res. J. Chem. Environ.

List of abbreviations

DCD a	Daley ablasia ata d himbanyala		
PCBs	Poly chlorinated biphenyls		
PAHs	Polycyclic aromatic hydrocarbons		
Naph	Naphthalene		
ACY	Acenaphthylene		
Flu	Fluorene		
PHE	Phenanthrene		
ANT	Anthracene		
PYR	Pyrene		
BaA	Benzo[a]anthracene		
CHR	Chrysene		
BbF	Benzo[b]fluoranthene		
BkF	Benzo[k]fluoranthene		
BaP	Benzo[a]pyrene		
IPY	Indeno [1,2,3cd]pyrene		
BPE	Benzo[ghi]perylene		
EPA	Environmental Protection Agency		
IACR	International Agency for Research on Cancer		
EU	European Union		
EFSA	European Food Safety Authority		
LOQ	Limit of Quantitation		
LOD	Limit of Detection		
%R	Recovery Percentage		
SD	Standard deviation		
RSD	Relative standard deviation(
S/N	Signal to noise ratio		
Σ [PAHs]	The total concentration of thirteen PAHs		
LLE	Liquid-liquid extraction		
SPE	Solid-phase extraction		
DMSO	Dimethyl sulfoxide		
hex	Hexane		
Ace	Acetone		
DCM	Dichloromethane		
PS-DVB	Polystyrene/divinylbenzene		
ppm	Part per million		
ppb	Part per billion		
UHPLC	Ultra high performance liquid		
	chromatography		
HPLC	high performance liquid chromatography		

List of abbreviations

GC/MS	Gas chromatography mass spectrometry	
EI	Electron ionization	
SIM	Selected ion monitoring	
MRM	Multi reaction monitoring	
CE	Collision energy	
eV	Electron volt	
EM	Electron multiplier	
TBHQ	Tert- Butyrated hydroxyl quinone	
ВНА	Butyrated hydroxy anisole	
Rt	Retention time	
I.D.	Internal diameter	
UHT	Ultra heated treatment	
EDI	Estimated Daily Intake	
AVT	Apple vinegar treatment	
GVT	Grape vinegar treatment	
DVT	Date vinegar treatment	
AT	Acetic acid treatment	
CT	Citric acid treatment	
MT	Malic acid treatment	
TAA	Total antioxidant activity	
TAC	Total antioxidant capacity	
DPPH	2,2-diphenyl-1-picrylhydrazyl radical	
IC ₅₀	Concentration of sample required to	
	scavenge 50% of the DPPH free radical	
RE%	Removal efficiency percentage	

V