

A Swarm Intelligent Algorithm for Optimizing Cloud Computing

A Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

Aya Ahmed Salah El-Din Farrag

Demonstrator at Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Under Supervision of

Prof. Dr. El Sayed M. El-Horbaty

Professor of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Safia Abbas Mohamad

Assistant Professor in Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Acknowledgment

Frist and for most, I'd like to thank God for all the help and support that I got to finish this thesis.

Second, I'd like to thank and show real appreciation to my lead supervisor Prof. El-Sayed M. El-Horbaty for his encouragement and great guidance that lead me to this point even when I stumbled many times. Also, I'd like to express gratitude to my mentor Dr Safia for her advice, direction and teaching to unlock many difficulties for me within this thesis. I'd like to acknowledge their great effort for me till now.

Third, I'd like to thank my friends for offering their assistance and comments even before asking and helped me a lot.

Lastly, for my family who are always my backbone, I'm very grateful for your understanding and support to every move I make and for always assuring me that there is always a way. I'd like to especially mention my mom who is my greatest support to finalizing this thesis and more glad for this accomplishment than anyone.

Abstract

Cloud computing became existing in every domain of life, enhancing their functionality and adding new opportunities to it. It is the mechanism of moving the processing effort from the local devices to the data center facilities. Its exponential growth gained it a huge focus towards solving its challenges. Quality of service is one of the main challenges of cloud computing which are known as: 1) security and privacy, 2) portability, 3) reliability and availability and 4) quality of service (QoS). Quality of service is maintaining the proper management of resources in order to fulfill the Service Level Agreements (SLAs), which is the agreement between the cloud providers and the cloud users. Considering the massive demand to handling Cloud Computing challenges, research has been continuously performed in this area especially in load balancing.

Load balancing is the process of distributing load over servers to keep the system steady without overloaded or under-loaded ones which maximize resource utilization. The load can be network load, memory or CPU loads. The Load balancing of any cloud system is dependent on its scheduler either task scheduler or resource scheduler. Research on it assists in improving one of these elements: 1) makespan, 2) response time, 3) migration time, 4) energy consumption, 5) throughput or 6) cost. It is branched to two types of work: Static Load Balancing (SLB) and Dynamic Load Balancing (DLB). Static Load Balancing runs from the start with prior knowledge of the system, while Dynamic Load Balancing depends on the progress of the system as it runs when overload state or imbalance occurs. It is considered a NP-hard problem so to solve it many research was done using heuristic and Meta heuristic Algorithms.

This thesis proposes the use of selected swarm algorithms: Ant-Lion optimizer (ALO) and Grey wolf optimizer (GWO) in task scheduling of a cloud computing system as they are known for their high avoidance of local optima and high exploration of the search space in comparison to other intelligent algorithms. Upon experimenting with ALO against the traditional algorithm Round Robin (RR) in the small-scale simulation of ten task and five VMs, it outperforms RR in tasks executing time, but it was slow in scheduling because of its random walk of ants in each iteration. As such, this thesis proposes two modification to speed up the random walk of ALO: ALO2 and ALORW.

Additionally, experimenting and comparing the results with GWO and commonly known Meta heuristics Algorithms in task scheduling such as: Particle Swarm Optimization (PSO) and Firefly Algorithm (FFA). In testing the algorithms in large scale of 20 to 30 VMs and 1 to 2 DCs, the results present that, ALO2 and grey wolf optimizer (GWO) are strong adversary to particle swarm optimization (PSO), and better than firefly (FFA) and they both have potential in load balancing.

Table of Contents

Chapter 1.	Introduction	14
1.1	Overview	14
1.2	Problem definition	15
1.3	Thesis objectives	15
1.4	Methodology	15
1.5	Contribution	16
1.6	Thesis organization	16
Chapter 2.	Cloud Computing	18
2.1	Cloud computing paradigm	18
2.2	Cloud Effect & technologies	19
	2.2.1 Virtualization	19
	2.2.2 Internet technologies	20
	2.2.3 Distributed computing (clusters, grids)	20
	2.2.4 Autonomic computing	20
	2.2.5 New Trending Technologies	21
	2.2.5.1 Micro-services:	21
	2.2.5.2 Blockchain	
2.3	Cloud Deployment Models	
	2.3.1 Private cloud	23
	2.3.2 Public cloud	23
	2.3.3 Hybrid cloud	23
2.4	Cloud Service Models	24
	2.4.1 Infrastructure as a service (IaaS)	24
	2.4.2 Platform as a service (PaaS)	25
	2.4.3 Software as service (SaaS)	25
	2.4.4 Mobile "backend" as a service (MBaaS)	25
2.5	Cloud benefits	26
2.6	Cloud Applications	26
	2.6.1 Business	27
	2.6.2 Health care	27
	2.6.3 Education (e-learning)	28
2.7	Cloud challenges	
	2.7.1 Security and Privacy	
	2.7.2 Portability	
	2.7.3 Reliability and availability	
	2.7.4 Bandwidth Cost	
	2.7.5 Performance and Quality of service	

Chapter 3.	Related work of Load Balancing			
3.1				
	3.1.1 Optimization	33		
3.2	Load balancing challanges	35		
	3.2.1 Distribution of the Cloud Nodes	35		
	3.2.2 Storage/ Replication	35		
	3.2.3 Algorithm Complexity	35		
	3.2.4 Point of Failure	36		
3.3	Swarm Algorithms	36		
	3.3.1 Ant Colony Optimization	37		
	3.3.2 Artificial Bee Colony	38		
	3.3.3 Particle Swarm Optimization	39		
	3.3.4 Firefly	40		
3.4	Related Work	42		
Chapter 4.	Methodology	48		
4.1	Introduction	48		
4.2	Introduced Algorithms	48		
	4.2.1 Grey Wolf Optimizer	48		
	4.2.2 AntLion optimizer	50		
4.3	Proposed ALO Algorithm Modifications	51		
4.4	System Model	52		
Chapter 5.	Experiment and Results	56		
5.1	Simulation 1	56		
	5.1.1 Environment Setup and Results	56		
5.2	Simulation 2	57		
	5.2.1 Description	57		
	5.2.2 Environment Setup	57		
	5.2.3 Results	58		
Chapter 6.	Conclusions and Future Work	72		
6.1	Conclusions	72		
6.2	Future Work	73		
Appendix: 1	Proposed Algorithms' java implementation on CloudSim	75		
Appe	endix A: Antlion optimizer algorithm the three versions	76		
	1. ALO_2:	76		
	2. ALO_Code	83		
	3. ALO_RW	91		
Appe	endix B: Grey Wolf optimizer algorithm	99		
	endix C: Sample Data Broker			
References	-	108		
List of Publ	ications:	113		

List of Tables

Table 3.1. Work in Load Balancing	. 44
Table 3.2: Load Balancing with new swarm algorithms	. 46
Table 5.1: CloudSim Parameters	. 57
Table 5.2:DC1 VM20 SD of CPU usage in VM	. 58
Table 5.3: DC1 VM20 SD of CPU usage in DC	. 59
Table 5.4:DC1 VM20 no. Of VM Migration	. 60
Table 5.5:DC1 VM30 SD of CPU usage in VM	. 61
Table 5.6:DC1 VM30 SD of CPU usage in DC	. 62
Table 5.7:DC1 VM30 no. Of VM Migration	. 63
Table 5.8:DC2 VM20 SD of CPU usage in VM	. 64
Table 5.9 :DC2 VM20 SD of CPU usage in DC	. 65
Table 5.10 :DC2 VM20 no. Of VM Migration	. 66
Table 5.11 :DC2 VM30 SD of CPU usage in VM	. 67
Table 5.12:DC2 VM30 SD of CPU usage in DC	. 68
Table 5.13:DC2 VM30 no. Of VM Migration	. 69

List of Figures

Figure 2.1:Cloud Technologies Diagram	19
Figure 2.2: Differences between micro-services and SOA	21
Figure 2.3:Micro services Advantage and disadvantages	22
Figure 2.4:Cloud Deployment Models	24
Figure 2.5: Cloud Service Models examples	26
Figure 2.6: Education and Cloud timeline	29
Figure 2.7: Cloud challenges	29
Figure 4.1: system Model description	52
Figure 5.1:ALO Simulation	56
Figure 5.2: DC1 VM20 SD of CPU usage in VM	59
Figure 5.3:DC1 VM20 SD of CPU usage in DC	60
Figure 5.4:DC1 VM20 no. Of VM Migration	61
Figure 5.5:DC1 VM30 SD of CPU usage in VM	62
Figure 5.6:DC1 VM30 SD of CPU usage in DC	63
Figure 5.7:DC1 VM30 no. Of VM Migration	64
Figure 5.8:DC2 VM20 SD of CPU usage in VM	65
Figure 5.9:DC2 VM20 SD of CPU usage in DC	66
Figure 5.10:DC2 VM20 no. Of VM Migration	67
Figure 5.11:DC2 VM30 SD of CPU usage in VM	68
Figure 5.12:DC2 VM30 SD of CPU usage in DC	69
Figure 5.13:DC2 VM30 no. Of VM Migration	70

List of Algorithms

Algorithm 3.1: The pseudo code of ACO	38
Algorithm 3.2:The pseudo code of ABC	39
Algorithm 3.3:The pseudo code of PSO	40
Algorithm 3.4:The pseudo code of FFA	41
Algorithm 4.1:The pseudo code of GWO	49
Algorithm 4.2:The pseudo code of ALO	51

List of Abbreviations

Abbreviation	Name
ABC	Artificial Bee Colony
ACO	Ant Colony Optimizer
ALO	Ant Lion optimizer
APIs	Application Programming Interfaces
AWS	Amazon Web Services
BI	Business Intelligence
CSP	Cloud Service Provider
DC	Data Center
FA or FFA	Firefly Algorithm
FCFS	First Come First Serve
GA	Genetic Algorithm
GWO	Grey wolf Optimizer
IaaS	Infrastructure As A Service
LJF	Longest Job First
MbaaS	Mobile "Backend" As A Service
MCT	Minimum Completion Time
MET	Minimum Execution Time
PaaS	Platform As A Service
PSO	Particle Swarm Optimizer
RA	Random Allocation
RR	Round Robin
SaaS	Software As A Service
SI	Swarm Intelligence
SJF	Shortest Job First
SLAs	Service Level Agreements
SOA	Service Oriented Architecture
SOAP	Simple Object Access Protocol
VM	Virtual Machine
QoS	Quality of Service
SDK	Software Development kit
NP	Nondeterministic polynomial

BRS	Best Resource Selection
RSA	Random Scheduling Algorithm
IPSO	Improved Particle Swarm Optimization
LSF	Longest Job First

Chapter 1

Introduction

Chapter 1. Introduction

1.1 Overview

Cloud computing is the process of renting computation and storage facilities and services to interested third parties. Cloud computing revolutionized the IT industry. It impacted the business intelligence (BI) landscape heavily, pretty much everything else it touches. It emerged from the need to outsource computing and storage facilities to clients. Its rapid growth is because of the huge enhancement of communication technologies and virtualization technologies that lead most of its systems nowadays to become essential in day to day activities especially the trending mobile cloud computing.

Any cloud system differentiates itself by the enhancement of one of their main challenges. These challenges are: security, network cost, reliably, portability and quality of service. The importance of cloud led its challenges to be a hot research points. The focus of this thesis mainly on quality of service specifically load balancing problem.

Cloud Load balancing is improving performance by the distributing tasks equally on resources utility. It mainly divided to static and dynamic load balancing. Static load balancing is scheduling of tasks fairly on available resources. However, dynamic load balancing is dealing with overloaded or failure VM by migration of either the VM or the overloaded tasks.

Cloud scheduling has always been a research subject whose goal is to ensure that every computing resource is distributed fairly and effectively. It is challenging to reliably schedule tasks because any individual instance may become unavailable due to autoscaling or network partitioning. Therefore, there have been many Algorithms introduced.

Intelligent Algorithms are often introduced in scheduling as simple heuristic algorithms hardly seem effective in dynamic environments. From those researched Algorithms are Swarm intelligent algorithms like PSO, ACO, ABC and other. As they are imitates the intelligence of natural group behavior, they show flexibility in dynamic internal or external changes and fast adaptation when some individuals fails.

1.2 **Problem definition**

To work on load balancing, traditional algorithms aren't sufficient and the metaheuristic algorithms like evolutionary algorithms and swarm intelligent algorithms were explored. Additionally, swarm intelligent algorithms are known for their self-organizing properties thus can work well in a dynamic scalable environment like cloud systems [3, 14]. Moreover, as new swarm intelligent algorithms emerge like grey wolf optimizer (GWO), firefly algorithm (FA) and ant lion optimizer (ALO) and many others, so is the need to explore these algorithms in cloud computing depending on no free lunch theorem [7].

1.3 Thesis objectives

The objective of this thesis is to introduce an efficient task scheduler to work as load balancing mechanism, minimizing the makespan and try to minimize dynamic load balancing work of migrating overloaded VMs. Accordingly, minimize the cost of migration and give better performance than other intelligent algorithms. This is done by exploring, implementing and analyzing the results of the new swarm intelligent algorithms grey wolf optimizer (GWO) and ant lion optimizer (ALO).

1.4 Methodology

In this thesis, the task scheduler is implemented on cloud simulator called CloudSim and its graphical extension CloudReports. Moreover, the experiment is done with various scales of tasks and resources to properly examine the scheduling algorithms. Grey wolf optimizer (GWO) and ant lion optimizer (ALO) are researched as scheduling algorithms as they are known for their avoidance of local optima. Furthermore, they are compared with other acknowledged swarm algorithms particle swarm optimizer (PSO) and firefly algorithm (FFA).