Clinical, Radiographic and Histological Evaluation of Allium Sativum Extract in Pulpotomy of Primary Molars: A Randomized Clinical Trial

A thesis submitted to the faculty of dentistry,

Ain Shams University

For

Partial fulfillment of requirements for the Master Degree in Pediatric Dentistry

By

Ghada Rezk Gomaa Rezk

B.D.S (2010)

Faculty of Dentistry,

Ain Shams University

2018

Supervisors

Dr. Noha Samir Kabil

Professor of Pediatric Dentistry and Public Health Department Faculty of Dentistry, Ain Shams University

Dr. Gehan Gaber Allam

Lecturer of Pediatric Dentistry and Public Health Department
Faculty of Dentistry, Ain Shams University

بسم الله الرحمن الرحيم نَرَفَعُ كُدَرَ جَالِي مَن نَشَكَاءُ وَفُونَ كُلِّ ذِي عِلْمِ وَفُونَ كُلِّ ذِي عِلْمِ

سورة يوسف الآية 76

Acknowledgement

I would like to express my thanks to **Dr. Noha Samir Kabil**, Professor of Pediatric Dentistry and Public Health Department, Faculty of Dentistry, Ain Shams University for her guidance and advice throughout this work. I am sincerely grateful to her for sharing her experience and illuminating views throughout my project.

Also, I would like to express my thanks to **Dr. Gehan Gaber Allam**, Lecturer of Pediatric Dentistry and Public Health Department, Faculty of Dentistry, Ain Shams University for her support and precise comments, that enriched this work.

Also, I would like to express my thanks to **Dr. Nashwa Nagy El-Khazragy** and **Dr. Wafaa Mohamed Fathy**, the workers in the **Oncology Diagnostic Unit**, Faculty of Medicine, Ain Shams University and **Dr. Doaa Mohamed Osama**, Assisstant Lecturer of Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University for their real help in the aqueous Allium Sativum extract preparation and sterilization.

I would like to thank the candidates in my research and their parents as without their cooperation throughout the line of treatment; I could not be able to continue my study.

Finally, I would like to thank my dear professors, colleagues and the staff members of Pediatric Dentistry and Public Health Department for their help and support.

Dedication

This work is humbly dedicated to all my valuable treasures in life:

My dearly loved mother, the meaning of love and kindness, the smile of life, the secret behind my success, the most beloved among all love.

My beloved father, the one who Allah has covered him with prestige and reverence. I carry his name proudly, his words are shining like stars to guide me today, tomorrow and in the future.

My dear brother, who helped me to overcome difficulties in my thesis through his efforts.

My lovely sister and her sweet kids, those who supported, encouraged and eased the challenges of my study through their words, smile and emotions.

List of Contents

	Page
List of Contents	i
List of Tables	ii
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Review of Literature	3
Aim of the Study	23
Subjects, Materials and Methods	24
Results	44
Discussion	73
Conclusions	81
Recommendations	82
Summary	83
References	86
Appendices	98
Arabic Summary	107

List of Tables

Table no.	Title	Page
Table (1):	Materials used in the study and the manufacturer	29
Table (2):	Frequencies (n), percentages (%) for gender in both groups	44
Table (3):	Frequencies (n), percentages (%) for gender in both groups	46
Table (4):	Frequencies (n), percentages (%) for the type of teeth in both groups	47
Table (5):	Frequencies (n), percentages (%) for the clinical findings in both groupsat different follow-up intervals	49
Table (6):	Odds of clinical findingsat different follow-up intervals	50
Table (7):	Frequencies (n), percentages (%) for the radiographic findings in both groupsat three months	52
Table (8):	Odds of radiographic findings at three months	54
Table (9):	Frequencies (n), percentages (%) for the radiographic findings of in both groupsat six months	55
Table (10):	Odds ratio of radiographic findings at six months	57
Table (11):	Frequencies (n), percentages (%) for the radiographic findings of group (A) at different follow-up intervals	58
Table (12):	Frequencies (n), percentages (%) for the radiographic findings of group (F)at both follow-up intervals	65

List of Figures

Figure	Title	Page
no. Fig. (1):	Line chart showing the relation between power and sample size	25
Fig. (2):	Grouping of the randomized clinical trial	26
Fig. (3):	Allium SativumExtract	30
Fig. (4):	Formocresol	30
Fig. (5):	Resin Modified Zinc Oxide-Euogenol Cement	30
Fig. (6):	Zinc Phosphate Cement	31
Fig. (7):	Stainless Steel Primary Molar Crowns	31
Fig. (8):	Glass Ionomer Cement	32
Fig. (9):	Shaker machine producing dough-like mixture	33
Fig. (10):	Bacteriological Millipore	34
Fig. (11):	Sterilization process	34
Fig. (12):	XCP Film Holder	35
Fig. (13):	The Paralleling Technique	35
Fig. (14):	Fona ScaNeo	36
Fig. (15):	Size 0 Phosphor Plate	36
Fig. (16):	Pulp stumps after removal of sterile cotton pellets	38
Fig. (17):	Cotton pellet damped with Allium Sativum extract	39
Fig. (18):	1:1 powder/liquid ratio	39

Fig. (19):	Pulp stumps after removal of cotton pellet damped with Allium Sativum extract (no fixation observed)		
Fig. (20):	Zinc-oxide dressing of the pulp stumps		
Fig. (21):	Final tooth restoration with stainless steel crown		
Fig. (22):	The count of different genders in both groups		
Fig. (23):	Dental arch type in both groups		
Fig. (24):	The count of teeth types in both groups		
Fig. (25):	Clinical findings in both groups at different follow-up intervals		
Fig. (26):	Radiographic findings in both groups at three months		
Fig. (27):	Radiographic findings of both groups at six months		
Fig. (28):	Radiographic findings of group (A) at both follow-up intervals		
Fig. (29):	Success of Allium Sativum extract pulpotmy in the mandibular2 nd primary molar		
Fig. (30):	Success of Allium Sativum extract pulpotmy in the mandibular 1 st primary molar		
Fig. (31):	Failure of Allium Sativum extract pulpotmy in the mandibular 1 st primary molar		
Fig. (32):	Failure of A. Sativum extract pulpotmy in the mandibular 1 st primary molar		
Fig. (33):	Radiographic findings of group (F) at different follow- up intervals		

Fig. (34):	Success of formocresol pulpotmy in the lower 1 st primary molar	67
Fig. (35):	Failure of formocresol pulpotmy in the lower 1st primary molar	68
Fig. (36):	Photomicrograph of a section in the pulp of a primary molar, treated with Allium Sativum extract	69
Fig. (37):	Photomicrograph of a section in the pulp of a primary molar, treated with Allium Sativum extract	70
Fig. (38):	Photomicrograph of a section in the pulp of a primary molar treated with formocresol	71
Fig. (39):	Photomicrograph of a section in the pulp of a primary molar treated with formocresol	72

List of Abbreviations

Abbreviation	Abbreviation for
ALARA	As low as Reasonably Achievable
BC	Before Christ
cm	centimeter
DCs	Dendritic Cells
FC	Formocresol
FS	Ferric Sulfate
HDL	High Density Level
IARC	The International Agency for Research on Cancer
LDL	Low Density Level
μ	microns
ml	millimeter
MSB	Mitis Salivarius Bacitracin
MTA	Mineral Trioxide Aggregate
NaOCl	Sodium Hypochlorite
PC	Portland Cement
ppb	Part per billion
PSP	Photostimulable phosphor radiographic systems
WHO	World Health Organization

Introduction

Dental caries has been identified as one of the leading causes of tooth loss in children all around the world. In this sense, dental extraction is the most common form of dental treatment in developing countries despite of the significant progress in recent years in dentistry ⁽¹⁻³⁾.

The primary dentition's obvious function is chewing food. It also acts as a guide for the eruption of permanent teeth. Other functions include stimulation of growth of the jaw and aiding in digestion and phonation. Primary dental arches form the basis for the proper development of permanent dental arches. Premature loss of primary teeth can result in some negative consequences in both dentitions ⁽¹⁾.

The primary objective of pulp therapy is to to maintain the vitality of the pulp of a tooth affected by caries, traumatic injury, or other causes so that preserving the integrity and health of the teeth and their supporting tissues^(4,5).

Vital pulp therapy includes three therapeutic approaches: indirect pulp capping for teeth with dentinal cavities and reversible pulpitis; direct pulp capping and pulpotomy which are considered in cases of pulp exposure (6).

A pulpotomy is performed in a primary tooth with extensive caries but without evidence of radicular pathology when caries removal results in a carious or mechanical pulp exposure. The coronal pulp is amputated, and the remaining vital radicular pulp tissue surface is treated with a long-term clinically-successful medicament ⁽⁷⁾.

Pulpotomy can be performed using different capping medicaments or biological materials such as formocresol, ferric sulfate, MTA ,sodium hypochlorite, etc. However, none of them had met the same degree of effectiveness and success rate as formocresol. Due to possible hazards of formocresol (cytotoxicity, carcinogenicity, immunologic...), the demand for natural medicament to replace it as a pulp dressing material became imperative ⁽⁸⁾.

Modern medicine recognizes herbal medicine as a form of <u>alternative medicine</u>. A wide range of antimicrobial agents and herbal products are added to dentifrice and mouth rinsing solutions with the aim of preventing caries or biofilm formation ⁽⁹⁾.

Various natural products such as Curcuma zedoaria, calendula, Aloe vera and other herbs have been used effectively to treat oral diseases ⁽¹⁰⁾. The natural phytochemicals could offer an effective alternative to antibiotics and represent a promising approach in prevention and therapeutic strategies for dental caries and other oral infections.

One of the most widely researched plants in the field of medicine is Allium sativum (Garlic). The oil of this plant was recently used in pulpotomy ⁽¹¹⁾. The antibacterial effects of the fresh garlic extract have been thoroughly researched via literature and have been found that the extract will inhibit growth of various Gram-positive and Gram-negative bacteria ⁽¹²⁾. It is also reported that the garlic extract has inhibitory potential on isolated multidrug resistant strains of Streptococcus mutans from human caries teeth ⁽¹³⁾.

Review of Literature

Dental caries is one of the most prevalent epidemic chronic diseases. The process of dental caries is progressive and may continue especially in children till degradation of the dental hard tissues and infection of the dental pulp. Infected pulp tissue in primary teeth is usually treated with pulpotomy ⁽¹⁴⁾.

Despite the new medicaments introduced for pulpotomy over the past years, formocresol pulpotomy still has popularity among pediatric dentists, particularly in developing countries ⁽⁸⁾. Fixative properties, clinical success and availability of formocresol are common factors of its popularity. Nowadays, there are many concerns about the safety of formocresol due to its harmful effects that led to the change towards safer medicaments. Natural products are efficient, less toxic alternatives and constitute a promising source for medicines and new molecules ⁽¹⁴⁾.

Pulp Therapy of Primary Teeth:

Management of the grossly carious primary teeth is a common but sometimes challenging aspect of dental care for young children. The first treatment decision for the young patient with one or more extensively carious primary teeth is whether to retain or extract these teeth. Factors influencing the decision to retain primary teeth include medical, dental and behavioural factors ⁽¹⁵⁾.

The goal of pulp therapy in the primary teeth includes:

- 1. Successful treatment of the cariously involved pulp to maintain the tooth in a non-pathological state.
- 2. Maintenance of arch length and tooth space.

- 3. Restoration of comfort with the ability to chew.
- 4. Prevention of speech abnormalities and abnormal habits.

There are many options of pulp therapy of deep carious lesions in primary teeth:

- 1. Indirect pulp treatment
- 2. Direct pulp treatment
- 3. Pulpotomy(applied in this study)
- 4. Pulpectomy

In vital pulpotomy, the coronal pulp is removed, the pulp stumps treated, and the pulp chamber is filled with a sedative dressing with the intent of maintaining the vitality of the remaining radicular pulpal tissue. Then the pulp chamber is filled with a suitable base and the tooth restored ⁽¹⁶⁾.

***** Formocresol Pulpotomy:

Formocresol was first introduced by Buckley in 1904. In 1930, Sweet introduced the formocresol pulpotomy technique. Formocresol has subsequently become a popular pulpotomy medicament for primary teeth. Initially, the technique involved five visits. Sweet reduced the number of visits over the years, because of economic and behavior management considerations. Within a few years, Spedding and Redig reported the results of a 5-min formocresol protocol, the technique which used nowadays (17).

Formocresol (FC) is a compound consisting of 19% <u>formaldehyde</u>, 35% <u>cresol</u> and 31% water base. Glycerine is added to prevent the polymerization of formaldehyde to para-formaldehyde. The presence of para-formaldehyde causes clouding of the solution ⁽¹⁷⁾.