

Cyclic Fatigue Resistance and Shaping Ability of Two Different Nickel-Titanium Rotary File Systems

Thesis Submitted to Endodontic Department, Faculty of Dentistry, Ain Shams University In partial Fulfillment of the Requirement for Master's Degree in Endodontics

By

Mahmoud Sherif Mohamed Emadeldin Shawky B.D.S.

(Faculty of Dentistry, Ain Shams university, 2012)

Faculty of Dentistry
Ain Shams University
2019

Supervisors

Dr. Salma El Ashry

Professor of Endodontics Faculty of Dentistry Ain Shams University

And

Dr. Tarek Moustafa Abdelaziz

Lecturer of Endodontics Faculty of Dentistry Ain Shams University

Acknowledgment

I would like to express my deep gratitude to **Professor Doctor Salma El Ashry,** Professor of Endodontics, Faculty of Dentistry, Ain Shams University for her kind guidance, sincerity, extraordinary supervision and unlimited support and help throughout my academic and clinical work.

I would like to thank **Dr. Tarek Moustafa Abdelaziz,** Lecturer of Endodontics, Faculty of Dentistry, Ain Shams University for his excellent advice, valuable stimulating guidance and help during this study.

I would like to thank **all members of Endodontic department,** Faculty of Dentistry, Ain Shams University for their valuable help and cooperation.

I would like to dedicate this work to my great father, my lovely mother and my sisters who always support and help me.

I would like also to express my deep gratitude and dedicate this work to my idol and mentor Professor Doctor Essam Abdelhafez Naguib for his unlimited support.

I would like to thank my friends Tarek Alsaidy and Ahmed Alhussainy for their help and support.

List of Contents

List of contents List of figures List of tables Introduction		Page
		II
		IV
		1
Review of literature	Cyclic Fatigue	4
	Shaping Ability	12
Aim of the study		37
Materials and Methods		38
Results		59
Discussion		86
Summary and Conclusions		100
Recommendation and future research		104
References		105
Arabic Summary		1

List of Figures

Figure No.	Title	Page
Figure 1	Neoniti A1 file	38
Figure 2	Neoniti C1 file	38
Figure 3	One shape file	38
Figure 4	Endoflare	38
Figure 5	MD-chelcream (EDTA)	39
Figure 6	Fona Scaneo intraoral scanner	39
Figure 7	Cyclic Fatigue testing device and the block of the simulated canals	42
Figure 8	Metal block of the simulated canals.	43
Figure 9	A) Schematic drawing showing angle of curvature determined by Schneider's method B) Periapical radiograph using Schneider method to determine root angle by software (Romexes viewer)	47
Figure 10	Arrangement of the samples in a plastic box with their buccal sides oriented to the same direction.	49
Figure 11	Schematic diagram showing sample classification.	50
Figure 12	Picture showing CBCT imaging system and samples aligned perpendicularly to the beam.	51
Figure 13	Representative drawing of tooth sections showing dentin thickness measurement	54
Figure 14	Schneider's method for determination of angle of curvature.	56
Figure 15	Canal curvature for mesiobuccal canal on image obtained from CBCT before instrumentation using (Remoxis softwae).	57
Figure 16	Histogram showing the Number of cycles for failure (NCF) for different rotary systems used.	60
Figure 17	SEM photomicrograph of a fractured surface of a One Shape file in top view (700x).	61

Figure 18	SEM with higher magnification of the same One shape file sample (1500x).	62
Figure 19	SEM photomicrograph of a fractured surface of One Shape file in lateral view (250x).	62
Figure 20	SEM photomicrograph of a fractured surface of another One Shape file in lateral view (500x).	63
Figure 21	SEM analysis (800x) of a fractured surface of Neoniti file (top view).	64
Figure 22	SEM with higher magnification of the same Neoniti file sample (2000x)	64
Figure 23	SEM with higher magnification of the same Neoniti file sample (2500x).	65
Figure 24	SEM of another sample of Neoniti file (500x).	65
Figure 25	Pre- and post-operative dentin thickness of the two groups (Mesial side)	71
Figure 26	Pre- and post-operative dentin thickness of the two groups (Distal side)	71
Figure 27	CBCT axial sections pre-and post-instrumentation dentin thickness at multiple levels for a sample from One shape group.	72
Figure 28	CBCT axial sections pre-and post-instrumentation dentin thickness at multiple levels for a sample from Neoniti group.	73
Figure 29	Percentage of dentin thickness removal for the two groups (Mesial side).	75
Figure 30	Percentage of dentin thickness removal for the two groups (distal side).	77
Figure 31	Bar chart representing the effect of file type on Canal Transportation in Mesio-Distal direction.	81
Figure 32	Bar chart representing comparison between decreases in canal curvature for the two groups.	84
Figure 33	Bar chart representing comparison between % changes in canal curvature for the two groups.	84
Figure 34	CBCT image with sharpest sagittal section using Schneider curve angle determination method for a sample from One Shape group.	85
Figure 35	CBCT image with sharpest sagittal section using Schneider curve angle determination method for a sample from Neoniti group.	85

List of Tables

Table No.	Title	Page
Table 1	Materials & instruments used	38
Table 2	Mean and Standard deviation of cyclic fatigue resistance for different groups.	60
Table 3	Statistical profile for pre- and post-operative dentin thickness of the the two groups (mesial side).	69
Table 4	Statistical profile for pre- and post-operative dentin thickness of the the two groups (distal side).	70
Table 5	Statistical profile for the percentage of dentin thickness removal of the two groups (mesial side).	75
Table 6	Statistical profile for the percentage of dentin thickness removal for the two groups (distal side)	77
Table 7	Mean and Standard Deviation (SD) of transportation for Different Groups in Mesiodistal Direction.	81
Table 8	Angle of Curvature mean and Standard deviation (SD) values for Different groups	83

INTRODUCTION

Nickel-titanium (NiTi) root canal files were first introduced in 1988 by Walia et al to overcome the rigidity of stainless steel instruments and thereby improve the instrumentation of curved canals, NiTi is far more flexible than stainless steel and its superelasticity reduces the restoring force thereby allowing improved canal shaping and reduced transportation. Despite the many advantages of NiTi instrumentation, unexpected fractures may occur during clinical use and the impairment of the outcome of root canal treatment results from the impossibility of removing the instrument.

Instruments separated by torsional stresses usually present macroscopic plastic deformation whereas instruments fractured by fatigue generally exhibit no specific macroscopic pattern.

Although several clinical and laboratory studies have investigated the cumulative effects of multiple tensile-compressive stresses on the incidence of cyclic fatigue and instrument separation for NiTi files, little is known on how surface and alloy features affect NiTi instrument fracture.

The use of nickel-titanium (NiTi) rotary instruments for root canal system preparation has increased due to their undeniably favorable qualities; however, unexpected fracture is an important disadvantage of these instruments. Controversy remains regarding the contribution of torsional fracture, fatigue fracture and the combination of both to the separation of NiTi rotary instruments. Some have implicated fatigue fracture to be a main reason for the separation of endodontic files in the clinical setting. Fatigue fracture occurs due to repeated compressive and tensile stresses accumulated at the point of maximum flexure of an instrument rotating in a curved canal without the instrument being bind to the root canal.

Neoniti is a newly introduced NiTi rotary system with a non-homogeneous rectangular cross section and multiple taper in a single instrument; it consists of one C1 and three A1 (with #20, #25 and #40 tip sizes) files. The taper in the A1 #25 file is 0.08 from D0 up to D5; whereas from D5 to D16 the taper is 0.04. It is manufactured using a newly developed wirecut electrical discharge machining (WEDM) process. The manufacturer claims that this manufacturing process is highly precise down to the micron, oil-free and clean and stress is limited to the metal surface during this process.

Furthermore, it produces a rough surface, resulting in abrasive properties that enhance the speed of root canal preparation. Moreover, the manufacturer claims that these files undergo appropriate heat treatment that results in high flexibility and shape memory of this system.

The aim of root canal shaping is to form a tapered funnel preparation with increased diameter from the apex to the orifice. Several nickel-titanium instruments have been developed with different design to improve the quality of root canal preparation, to allow for proper shaping and to maintain curvature in curved canals.

This urged the interest to compare the two systems with different geometrical designs in terms of cyclic fatigue, degree of transportation and maintenance of root canal curvature.

REVIEW OF LITERATURE

1. Cyclic Fatigue:

NiTi rotary instrument offer greater flexibility and more resistance to torsional separation than stainless steel files, a property that allows instrumentation of curved canals with minimal transportation. However, separation via torsional and cyclic fatigue is still possible with NiTi instruments. Cyclic fatigue occurs when a metal is subjected to repeated cycles of tension and compression that causes its structure to break down, ultimately leading to fracture because NiTi instruments may show no visible signs of permanent deformation during cyclic fatigue, instrument separation may occur unexpectedly. Increasing the resistance to file separation has been a focus in new NiTi rotary instrument design.

Gambarini et al (2008) ¹ compared instruments produced using the twisted method (TF) and those using the M-wire alloy (GTX) with instruments produced by a traditional NiTi grinding process (K3). The results showed that K3 instruments showed no significant increase in the mean number of cycles to failure when compared with GT series X instruments. They concluded that cyclic fatigue resistance of nickel-titanium rotary files manufactured by twisting (TF) is significantly higher than instruments

produced with the traditional grinding process. However, instruments produced with M-wire (GTX) were not found to be more resistant to cyclic fatigue than instruments produced with the traditional NiTi grinding process.

Johnson et al (2008) ² compared cyclic fatigue life of ProFile rotary instruments made from a novel Ni-Ti Alloy and 508 nitinol. Cyclic fatigue testing was performed by rotating instruments at 300 RPM in a simulated steel root canal with 5 mm radius and 90 degrees curve until instrument separation. Data were recorded for torque and angle at fracture. Torsion testing found differences between all 508 Nitinol groups and ProFile files manufactured from M-Wire NiTi have significantly greater resistance to cyclic fatigue while maintaining comparable torsional properties.

Kramkowski et al (2009) ³ compared the torsional stress and cyclic fatigue characteristics of ProFile GT and ProFile GT Series X. Cyclic fatigue was determined by recording the time until breakage of a file rotating in a simulated canal with an applied 45° or 60° curve. There was no statistical difference in cyclic fatigue failure for ProFile GT and ProFile GT Series X in a canal with curvature of 45°. In the 60° canal curvature, ProFile GT