سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

"Cone Beam Computed Tomography Comparative Assessment of Maxillofacial Morphology in Patients with Bilateral Cleft Lip and Palate"

Thesis

Submitted to the faculty of Dentistry, Ain Shams University,
In partial fulfillment of the requirements for the Master degree
In Oral and Maxillofacial Radiology

Presented by

Yomna Osama Dardeer Abdelmalek Elhoseiny

Yomna.elhoseiny@gmail.com.01011102765

B.D.S, Ain Shams University- 2010

Under the supervision of

Prof.Dr. Mona Abo-El-Fotouh

Professor of Oral and Maxillofacial Radiology

Head of department of Oral Medicine, Periodontology and Oral Radiology

Faculty of Dentistry- Ain Shams University

Prof.Dr.Marwa Abdel Wahab Elkassaby

Professor of Oral and Maxillofacial Surgery

Head of department of Oral and Maxillofacial Surgery

Faculty of Dentistry- Ain Shams University

Dr.Raghdaa Abo Elkhair Bayoumy Mostafa

Lecturer of Oral and Maxillofacial Radiology

Faculty of Dentistry- Ain Shams University

Faculty of Dentistry

Ain Shams University (2019)

Dedication

A special feeling of gratitude to my loving, caring and supporting parents and family

Acknowledgment

First of all, Praise to ALLAH, who without HIS support, I could not finish this work.

I would like to express my sincere gratitude and deepest thanks to to my supervisor *Prof. Dr. Mona Abo-El-Fotouh*, professor and Head of Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Ain Shams University, for her help, direct supervision, sincere encouragement and patience, during this work.

I would like to express my gratefulness and appreciation for *Prof. Dr. Marwa* Elkassaby, professor and Head of Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Ain Shams University, who gave up much of her time and deep experience to allow the pursuit of this work.

I am greatly thankful to my friend and supervisor *Dr Raghdaa Abo Elkair*, lecturer of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ain Shams University, for her valuable advices and continuous support. I am deeply grateful to her for her skillful supervision and valuable opinions.

I would like to thank my colleagues in the Oral Radiology Department for their support and help whenever asked for.

List of contents

Dedication	i
Acknowledgment	ii
List of figures	iii
List of tables	ix
List of abbreviations	xi
Introduction	1
Review of literature	4
Aim of study	39
Patients and methods	40
Results	63
Case (1) presentation	79
Case (2) presentation	89
Discussion	99
Summary	111
Conclusion	113
Recommendations	114
References	115
Arabic summary	

List of figures

number 1	Facial primordia responsible for development	<u>number</u>
	Facial primordia responsible for development	
	C.1 C	6
	of the face	
	Figure 2: Development of the secondary	7
1	palate T = tongue, P = palatal shelve, a)	
	formation of the palatal shelves, b) elevation	
	of the shelves to a horizontal orientation, c)	
	Fusion of the shelves and separation of the	
	nasal and oral cavities Veau classification	0
		8 14
	At 24 weeks, 3D surface-rendered imaging	14
	(coronal plane) showed bilateral cleft lip with protrusion of the premaxilla	
	Three-dimensional US image in a 32 weeks	15
	fetus showing left unilateral cleft lip	15
	Sonographic coronal view showing the	16
	retronasal triangle with higher ecchogenicity	10
	than surroundings	
	Basic principle of CBCT	18
	Comparison of volume data sets obtained	19
	isotropically (left) and anisotropically (right)	19
	Different FOV used in CBCT a) large FOV	21
	b) medium FOV c) restricted FOV	21
	Component of image intensifier tube/charge-	23
	coupled device	25
	Types of FPD	24
	Standard display modes of CBCT	25
	Oblique planar reformation used for	26
	examination of mandibular condyle	20
	Oblique reformation. Lines in the axial plane	27
	(left) indicate the rotated sagittal (middle) and	
	coronal (right) planes	
-	Reconstructed panorama	27
	a)Position of cross-sectional images,	28
	perpendicular to the panoramiccurve,	
-	displayed on an axial slice, b) Cross-sectional	
	images at various positions along the curve	

17	Different 3-D visualization techniques applied to CBCT dataset of a patient with a craniofacial deformity	30
18	Sagittal slice showing different anatomical landmarks.	42
19	Adjusting sagittal plane in coronal image such that it passes through middle of crista galli posteriorly (A) and lower central incisors anteriorly (B)	43
20	Sagittal image showing SNA angle measured using angle tool S = sella; N = nasion; ; A = point A, SNA = 89.8°	44
21	a) Coronal slice showing tip point of nasal septum and point O, b) Measuring ASD using angle tool, point O = most deviated part of the nasal septum, ASD = 10.1°	46
22	Sagittal slice showing ANB angle measured using angle tool, ANB = 12.6°	47
23	Sagittal image showing AUFH measured as straight line from N = nasion to ANS = anterior nasal spine using ruler tool, AUFH = 39.8mm	48
24	Sagittal slice showing ALFH measured using ruler tool, ANS = anterior nasal spine; Me = menton, ALFH = 78.4mm	49
25	Sagittal slice showing nasal tip projection measured as the linear horizontal distance from tip of nose to a straight line tangent to nasion (N) and pgonion (Pg), TP = 27.3mm	50
26	Sagittal slice demonstrating the nasal bone length measured from the most anterior point of the frontonasal suture to end point of the nasal bone, nasal bone length = 21.6	51
27	Coronal slice demonstrating the width of nasal bone aperture measured at the widest points. width of nasal bone aperture = 26.5 mm	52
28	a) Locating ANS = anterior nasal spine on axial slice, b) measuring distance from the point, corresponding to the ANS at the level of maxillary tuberosity, to a horizontal line joining the most posterior parts of maxillary tuberosity = 46.1mm	53

29	Axial slice showing Zygomatic prominence	54
	on right and left side, R =8.02mm, L =8.61mm	
30	ABD measured apical to central incisor, ABD	55
	= 45.3	
31	Selecting VOI overlay tool and adjusting	56
	borders around the maxillary sinus in axial,	
	sagittal and coronal planes	
32	Adjusting the rendering histogram	57
33	Object tool selected, starting points placed on	57
	coronal image and the desired amount of	
	growth entered	
34	Changing amount of growth	58
35	Shifting to [Expand/Shrink] tool and entering	58
	value in voxel unit	
36	Choosing select as a new object	59
37	Segmented maxillary with volume calculated,	59
	maxillary sinus volume = 4.89cc	
38	a) Selecting target position b) Adjusting the	60
	cube size	
39	3D zoom function used for teeth assessment	60
40	Assessment of the right side	61
41	Assessment of the left side	61
42	Bar graph showing difference in ASD among	64
	the two groups	
43	Bar graph showing difference in ANB among	65
	the two groups	
44	Bar graph showing difference in	66
	AUFH/ALFH among the two groups	
45	Bar graph showing difference in TP among	67
	the two groups	
46	Bar graph showing difference in nasal bone	68
	length among the two groups	
47	Bar graph showing difference in width of	69
	nasal aperture among the two groups	
48	Bar graph showing difference in the relation	70
	of premaxilla to maxilla among the two	
	groups	
49	Bar graph showing difference in zygomatic	71
	prominence among the two groups	
	1 1	

50	Bar graph showing difference in zygomatic prominence between right and left side in group P (a) and in group R (b)	72
51	Bar graph showing difference in ABD among the two groups	73
52	Bar graph showing difference in maxillary sinus volume (MSV) among the two groups	74
53	Bar graph showing difference in maxillary sinus volume (MSV) among right and left side of group P (a) and group R (b)	75
54	Bar graph showing significant difference in number of teeth in premaxilla among the two groups	76
55	Sagittal image showing SNA angle; S = sella; N = nasion; A = point A, SNA= 89.6°	79
56	Coronal image showing ASD; point 0 = most convex point of the deviated nasal septum, ASD = 9°	80
57	Sagittal image showing ANB angle; A = point A; N = nasion; B = point B, ANB=13.7°	80
58	Sagittal image showing AUFH; N = nasion; ANS = anterior nasal spine, AUFH = 39.7 mm	81
59	Sagittal image showing ALFH; ANS = anterior nasal spine; Me = menton, ALFH = 78.6 mm	81
60	Sagittal image showing nasal tip projection; N = nasion; Po = pogonion, TP = 27.7 mm	82
61	Sagittal image showing nasal bone length = 21.6 mm; N = nasion	82
62	Coronal image showing width of nasal aperture = 21.9 mm	83
63	Coronal image showing distance from point corresponding to ANS to a horizontal line joining the most posterior parts of maxillary tuberosity = 45.9mm	83
64	Coronal image showing zygomatic prominence Right side = 6 mm, Left side = 6.6 mm	84
65	Sagittal image showing ABD measured apical to central incisor	84

66	Right maxillary sinus volume = 4.89 cc	85
67	Left maxillary sinus volume = 4.15 cc	85
68	a) Axial image showing cube size adjusted to	86
	include the whole premaxilla, b) teeth in	
	premaxilla as viewed from labial aspect	
69	a) Axial image showing cube size adjusted to	87
	include posterior segment on left side and	
	corresponding zoomed cube (b)	
70	a) Axial image showing cube size adjusted to	88
	include posterior segment on right side and	
	corresponding zoomed cube (b)	
71	Sagittal image showing SNA angle; S = sella;	89
	$N = $ nasion; $A = $ point A , $SNA = 73.7^{\circ}$	
72	Coronal image showing ASD; point $0 = most$	90
	convex point of the deviated nasal septum,	
	$ASD = 8.1^{\circ}$	
73	Sagittal image showing ANB angle; A =	90
	point A; N = nasion; B = point B, ANB=2.7°	
74	Sagittal image showing AUFH; N = nasion;	91
	ANS = anterior nasal spine, AUFH = 46.69	
	mm	
75	Sagittal image showing ALFH; ANS =	91
	anterior nasal spine; Me = menton, ALFH =	
	65.19 mm	
76	Sagittal image showing nasal tip projection;	92
	N = nasion; $Po = $ pogonion, $TP = 21.86 $ mm	
77	Sagittal image showing nasal bone length =	92
	20.3 mm; N = nasion	
78	Coronal image showing nasal aperture = 22.81	93
	mm	
79	Coronal image showing distance from point	93
	corresponding to ANS to a horizontal line	
	joining the most posterior parts of maxillary	
	tuberosity = 35.77mm	
80	Coronal image showing zygomatic	94
	prominence Right side = 7.87 mm, Left side =	
	9.61mm	
81	Sagittal image showing ABD measured apical	94
	to central incisor	
82	Right maxillary sinus volume = 8.86 cc	95
04	Right maximary sinus volume = 8.80 cc	<u> </u>

83	Left maxillary sinus volume = 8.23 cc	95
84	a) Axial image showing cube size adjusted to	96
	include the whole premaxilla, b) teeth in	
	premaxilla as viewed from labial aspect	
85	a) Axial image showing cube size adjusted to	97
	include posterior segment on left side and	
	corresponding zoomed cube (b)	
86	a) Axial image showing cube size adjusted to	98
	include posterior segment on right side and	
	corresponding zoomed cube (b)	