

Reliability Analysis of Some Consecutive-k-outof-n Systems in a Stress-Strength Setup

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mathematical Statistics

By:

Soad Mohamed Abdallah Bakry

Demonstrator at Department of Basic Science, Faculty of Computer and Information Science, Ain Shams University

Supervised By:

Prof. Dr. Nahed Abdel-Salam Mokhlis

Emeritus Professor of Mathematical Statistics, Department of Mathematics, Faculty of Science, Ain Shams University

Prof. Dr. Manal Mohamed Nassar

Emeritus Professor of Mathematical Statistics, Department of Mathematics, Faculty of Science, Ain Shams University

Dr. Mohamed Hassan Abdel-Aziz

Associate Professor of Scientific Computing, Department of Basic Science, Faculty of Computer and Information Science, Ain Shams University

Submitted to
Department of Mathematics
Faculty of Science
Ain Shams University
Cairo Egypt

2019

Table of Contents

	Page
List of Tables	iv
List of Figures	vi
Abbreviations and Notations	viii
List of Publications	xi
Acknowledgements	xii
Abstract	xiii
Summary	XV
CHAPTER (I): DEFINITIONS AND BASIC CONCEPTS	1
1.1. Introduction	1
1.2. Reliability	1
1.2.1. Types of systems	1
1.3. Systems with Change Points	11
1.4. Stress-Strength Model	11
1.4.1. Stress-strength model of k-out-of-n: G system	12
1.4.2. Stress-strength reliability of systems with change points.	12
1.5. Estimation of the Stress-Strength Reliability	14
1.5.1. Maximum likelihood estimation	14
1.5.2. Expectation-Maximization (EM) algorithm	17
1.6. Distributions Considered	20
1.6.1. Exponential form distributions	21
1.6.2. Generalized Lindley distribution	21
1.7. Literature Review	23
CHAPTER (II): EXACT RELIABILITY FORMULAS OF REGU-	
LAR AND RELAYED LINEAR CONSECUTIVE k-OUT-OF-n: F	
SYSTEMS WITH ONE CHANGE POINT	27
2.1. Introduction	27
2.2. Exact Reliability Formula of a Regular Linear Consecutive	
k-out-of-n: F System, with One Change Point at Position	
C	28

2.3. Exact Reliability Formulas for the Relayed Linear Consec
utive k-out-of-n: F Systems, with One Change Point at Po
sition c
2.3.1. Exact reliability formula of a unipolar-relayed sys
tem
2.3.2. Exact reliability formula of a bipolar-relayed system
2.4 November 1 Hills and in a
2.4. Numerical Illustration
CHAPTER (III): RELIABILITY OF REGULAR AND RELAYEI LINEAR CONSECUTIVE k-OUT-OF-n: F SYSTEMS WITH <i>n</i>
CHANGE POINTS
3.1. Introduction.
3.2. Exact Reliability Formulas
3.2.1. Exact reliability formula of the regular system
$2k \geq n \dots \dots$
3.2.2. Exact reliability formula of the unipolar-relayed
system, $2k \ge n$
3.2.3. Exact reliability formula of the bipolar-relayed
system, $2k \ge n$
3.3. Exact Reliability Formulas for Regular and Relayed
Systems with <i>m</i> Change Points
3.3.1. Exact reliability formula of regular systems
3.3.2. Exact reliability formula of the unipolar-relayed
system
3.3.3. Exact reliability formula of the bipolar-relayed
system.
3.4. Numerical Illustration.
CHAPTER (IV): STRESS-STRENGTH RELIABILITY OF REGU
LAR AND RELAYED SYSTEMS WITH ONE CHANGI
4.1. Introduction.
4.2. Stress-Strength Reliability of the Regular and Relayed
Systems
4.3. Application of the Stress-Strength Reliability Formula
with Some Specified Distributions
4 3 1 Case I

4.3.2. Case II	99
4.4. Estimation of the Stress-Strength Reliability of the Regular	
and Relayed Systems	101
4.4.1. MLE for Case I	101
4.4.2. MLE for Case II	103
4.5. Numerical Illustration	109
4.5.1. Numerical results of Case I	110
4.5.2. Numerical results of Case II	112
CHAPTER (V): STRESS-STRENGTH RELIABILITY OF REGU-	
LAR AND RELAYED SYSTEMS WITH m CHANGE POINTS,	
$2k \ge n$	117
5.1. Introduction	117
5.2. Stress-Strength Reliability of the Regular Linear Consecu-	
tive k-out-of-n: F System	117
5.3. Stress-Strength Reliability of the Relayed Linear Consec-	
utive k-out-of-n: F Systems	129
5.4. The Stress-Strength Reliability Model with m Change	
Points, for Some Specified Distributions	143
5.4.1. Case I	144
5.4.2. Case II	145
5.5. Estimation of the Stress-Strength Reliability of the Regular	
and Relayed Systems, $2k \ge n$	146
5.6. Numerical Illustration.	147
References	156

List of Tables

		Page
1.6.1.	The survival function of some distributions that belongs to the	
	exponential form	21
1.6.2.	Special cases of the generalized Lindley distribution	22
2.4.1.	Exact reliabilities for $k = 3$	56
2.4.2.	Exact reliabilities for $k = 5$	57
2.4.3.	Exact reliabilities for $k = 7$	58
3.4.1.	Exact reliabilities for $m = 0$	85
3.4.2.	Exact reliabilities for $m = 1, k = 5$	85
3.4.3.	Exact reliabilities for $m = 1, k = 7$	86
3.4.4.	Exact reliabilities for $m = 2, k = 5$	86
3.4.5.	Exact reliabilities for $m = 2, k = 7$	87
3.4.6.	Exact reliabilities for $m = 3, k = 7$	88
4.5.1.	True reliabilities for case I, with change in stress	110
4.5.2.	True reliabilities for case I, with change in strength	111
4.5.3.	True reliabilities for case I, with change in stress and	
	strength	111
4.5.4.	Estimated reliabilities, for case I	112
4.5.5.	True reliabilities for case II, with change in stress	113
4.5.6.	True reliabilities for case II, with change in strength	113
4.5.7.	True reliabilities for case II, with change in stress and	
	strength	114
4.5.8.	Estimated reliabilities, for case II	115
5.5.1.	True reliabilities for case I, with change in stress, $m = 2$	148
5.5.2.	True reliabilities for case I, with change in strength, $m = 2$	149
5.5.3.	True reliabilities for case I, with change in stress and strength,	
	m = 2	149
5 5 4	Estimated reliabilities for case I $m = 2$	150

5.5.5.	True reliabilities for case II, with change in stress,	
	m = 2	151
5.5.6.	True reliabilities for case II, with change in strength,	
	$m = 2 \dots \dots$	152
5.5.7.	True reliabilities for case II, with change in stress and	
	strength, $m = 2$	153
5.5.8.	Estimated reliabilities, for case II, $m = 2$	154

List of Figures

	page
1.1. Diagram for a series system with three components	3
1.2. Diagram for a parallel system with three components	4
1.3. Diagram of a linear consecutive 2-out-of-4: F system	6
1.4. Diagram of a unipolar-relayed linear consecutive 2-out-of-4: F system	9
1.5. Diagram of a bipolar-relayed linear consecutive 2-out-of-4: F	
system	10
1.6. oil or gas pipeline systems with m change points, $m \ge 1$	11
2.2.1. Regular system with j failures and the component at position c	
is working	
2.2.2. Regular system with j failures and the component at position c	
is failed	
2.2.3. Regular system having j failures, with the first c components	
are all failures	
2.2.4. Regular system with j failures having the last $n-c$ all failed	
components, and the component at position c is failed	
2.3.1. Unipolar-relayed system with <i>j</i> failures, while the first com-	
ponent and the component at position c are working	44
2.3.2. Unipolar-relayed system with j failures of which r and w consecutive failures are located directly before and after c , re-	
spectively, a failure at c , and first component is operating	46
2.3.3. Unipolar-relayed system with first component operating and j failures of which $c + w - 1$ consecutive failures are between the operating components at positions 1 and $c + w + 1$	
2.3.4. Unipolar-relayed system with first component operating and j failures such that the last $n-c$ components are failures, and r consecutive failures are located directly before c	
2.3.5. Bipolar-relayed system with <i>j</i> failures while the first, the last and the component at position <i>c</i> are working	-

2.3.6.	Bipolar-relayed system having j failures having r and w consecutive failures before and after c , respectively, a failure at c , and the first and the last components operating	52
2.3.7.	Bipolar-relayed system with first and last components operating, and j failures of which $c+w-1$ consecutive failures between first and the operating component	
	c+w+1	52
2.3.8.	bipolar-relayed system with first and last components operating, and j failures such that the components from $c+1$ to $n-1$ are failures, and r consecutive failures are located directly	
	before c	53

Abbreviations and Notations

The abbreviations and notations we used adopted throughout the thesis.

1. Abbreviations:

We use the following abbreviations:

PDF probability density function.

CDF cumulative distribution function.

i.i.d Independent and identically distributed.

MLE maximum likelihood estimator.

EM Expectation-Maximization algorithm.

2. Notations:

The following notations are used throughout the thesis.

n Number of components of the system.

k The minimum number of consecutive failed com-

ponents which cause the system failure.

Regular linear Linear consecutive k-out-of-n: F system, which is

not relayed.

 γ $\gamma = r$ stands for a regular linear,

 $\gamma = u$ stands for a unipolar-relayed linear,

 $\gamma = b$ stands for a bipolar-relayed linear.

 $R_{\nu}(n, k; p)$ Reliability of γ consecutive k-out-of-n: F system,

with identical components reliability p.

 $P(a) = [p_1, p_2]$

Vector of reliabilities, where p_1 denotes the reliabilities of components from the first component in the system up to the component at position a (change point), and p_2 denotes the reliabilities of components from the component at position a+1 up to the last component in the system.

 $R_{\gamma}(n,k;c,\underline{P}(c))$

The reliability of γ consecutive k-out-of-n: F system, with a change point, at position c, with components reliabilities $\underline{P}(c)$.

m

Number of change points in the system.

 $\underline{a} = [a_1, \dots, a_m]$

Vector of the positions of the change points of the system.

 $P_j(i)$ $= [p_i, p_{i+1}, ..., p_i]$

Vector of the reliabilities of the system components, the system consists of j - i + 1 components, first component with reliability p_i , second with reliability p_{i+1} , ..., and last with reliability p_i .

 $\underline{P(\underline{a})} = [p_1, p_2, \dots, p_{m+1}]$

Vector of reliabilities, where p_1 denotes the reliabilities from the first component in the system up to the component at position a_1 , p_2 denotes the reliabilities of components from the component at position $a_1 + 1$ up to a_2 , ..., and p_{m+1} denotes the reliabilities of components from the component at position $a_m + 1$ up to the last component in the system.

 $R_{\gamma}(n, k; P_n(1))$

The reliability of γ consecutive k-out-of-n: F system, for $2k \ge n$, with components reliabilities $P_n(1)$.

 $R_{\gamma}\left(n,k,m;\underline{C},\underline{P}(\underline{C})\right)$ The reliability of γ consecutive k-out-of-n: F system, for $2k \geq n$, with m change points, at positions \underline{C} , and (m+1) different reliabilities.

 $x_i = \begin{cases} 1 & \text{if the component at position } i \text{ is operating} \\ 0 & \text{if the component at position } i \text{ is failed} \end{cases}, i = 1, 2, \dots, n.$

 δ_i The length of the zero's run at i^{th} component.

 $L_j^0(l)$ The longest zero's run in $x_l, ..., x_j, l = 1$, and j = n, or l = 2, and j = n, n - 1.

 $R_{(s:s)\gamma}(n,k;c)$ Stress-strength reliability of γ consecutive k-out-of-n: F system, with a change point, at position c.

 $R_{(s:s)\gamma}(n,k,m;\underline{C})$ Stress-strength reliability of γ consecutive k-out-of-n: F system, with m change points, at positions \underline{C} .

List of Publications

- 1. N. Mokhlis, M. Nassar, and S. Bakry. (2018). Stress strength reliability of regular and relayed linear consecutive *k* out of *n* : *F* systems with *m* change points. *Journal of Statistics Applications & Probability*, **7**, 1-13.
- 2. S. Bakry and N. Mokhlis. (2019). Exact reliability formula for a linear consecutive k-out-of-n: F system and relayed consecutive systems with a change point for any $k \le n$, with stress-strength application. *Pakistan Journal of Statistics and Operation Research*, **15**, 231-247.

Acknowledgements

I wish to express my thanks and deepest gratitude to prof. Dr. Nahed Abdel-Salam Mokhlis, Emeritus Professor of Mathematical Statistics, Faculty of Science, Ain Shams University, for suggesting the objective of the work, helpful information, support, encouragement and especial assistance I have received from her through the valuable discussion, continuous interest, unfailing bits of advices and helping to get succeeded in my study. I am tremendously grateful for all the support and time she has given me over the research and writing up period. It would not be possible to complete this thesis without her endless support and understanding.

Thanks and appreciations are also extended to prof. Dr. Manal Mohamed Nassar, Emeritus Professor of Mathematical Statistics, Faculty of Science, Ain Shams University, and Dr. Mohamed Hassan Abdel-Aziz, Associate Professor of Scientific Computing, Faculty of Computer and Information Science, Ain Shams University, for their help and support during the research.

My special thanks to **Prof. Dr. Hassan Ramadan**, Chairman of the Department of Basic Science, Faculty of Computer and Information Science, Ain Shams University, for his continuous support.

I am particularly pleased to thank Department of Mathematics, Faculty of Science, Ain Shams University. All my professors and demonstrators whom have taught and supported me.

A special thanks is given to my parents **Dr. Mohamed Bakry** and **Mrs. Fatma El-Shemy**, my sisters **Amira**, **Nesreen** and my brother **Abdallah** for their love, prayers and continual support throughout my life. I would also like to thank my friends for their continuous encouragement.

Abstract

The aim of this thesis is to study the reliability of some linear consecutive kout-of-n: F systems, with a stress-strength setup. Explicit expressions for the reliability of regular and relayed linear consecutive k-out-of-n: F systems, with one change point are obtained for any value of k, $1 \le k \le n$, by conditioning on the state of the component at the change point, working or failed. A change point in a system means that the reliabilities of the components before and at this point differ from those after it. The case of having more than one change point is also discussed, and explicit expressions of the reliability are obtained for regular and relayed linear consecutive k-out-of-n: F systems, when $2k \ge n$, by using the longest zeros' run statistic. The components of the system are assumed to be independent. The change in reliabilities of the components may be due to change in the stress imposed on the components, change in the strength of the components, or change in both the stress and the strength. These three possibilities are studied, when there is one change point or when there are more than one change point. Formulas of the stress-strength reliabilities are derived generally for any continuous distributions for the stress and the strength. As application two cases are discussed: Case I, when the stress and the strength have distributions with the same exponential form, and Case II, when the stress and the strength have different distributions forms. In Case I explicit expressions for the stress-strength reliability of regular and relayed linear consecutive k-out-of-n: F systems are obtained under the three possibilities of a change point (one, or more). For Case II, as illustration the stress is assumed to have negative exponential distribution, while the strength is assumed to have generalized Lindley distribution. Estimation of the stress-strength