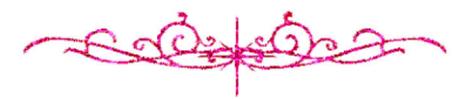


بسم الله الرحمن الرحيم


-cal-son

COEFOC CARGORIO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFERS CARBORNER

بعض الوثائق

الأصلية تالفة

CORRECT CORRECTION

بالرسالة صفحات

لم ترد بالأصل

COEFERT CARGORNO

RECEIVED IQ IMBALANCE COMPENSATION FOR MASSIVE MIMO SYSTEMS

By **Aly Mahmoud Mohamed Abd-Ellatif**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Electronics and Communications Engineering

RECEIVED IQ IMBALANCE COMPENSATION FOR MASSIVE MIMO SYSTEMS

By **Aly Mahmoud Mohamed Abd-Ellatif**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Yasmine A.Fahmy

Dr. Ahmed Hesham Mehana

Professor
Electronics and Communications
Engineering Department
Faculty of Engineering, Cairo University

Assistant Professor
Electronics and Communications
Engineering Department
Faculty of Engineering, Cairo University

RECEIVED IQ IMBALANCE COMPENSATION FOR MASSIVE MIMO SYSTEMS

By **Aly Mahmoud Mohamed Abd-Ellatif**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Prof. Yasmine A.Fahmy Thesis Main Advisor Communications Professor, Faculty of Engineering, Cairo University

Internal Examiner

Dr. Ayman Yehia Elezabi External Examiner

Communications Professor, Faculty of Engineering, Cairo University

Communications Associate Professor, AUC University

Prof. Mohammed Hamed Nafie

Approved by the Examining Committee

Engineer's Name: Aly Mahmoud Mohamed Abd-Ellatif

Date of Birth: 26/06/1987 **Nationality:** Egyptian

E-mail: alymahmod77@gmail.com

Phone: +201002839321

Address: 19 Said Abd-Elrahman st., Faysal, Giza

Registration Date: 1/10/2012 **Awarding Date:** 2019

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Yasmine A.Fahmy Dr. Ahmed Hesham Mehana

Examiners:

Prof. Yasmine A.Fahmy Thesis main advisor

Professor, Faculty of Engineering, Cairo University

Prof. Mohammed Hamed Nafie Internal examiner

Professor, Faculty of Engineering, Cairo University

Dr. Ayman Yehia Elezabi External examiner

Associate Professor, AUC University

Title of Thesis:

RECEIVED IQ IMBALANCE COMPENSATION FOR MASSIVE MIMO SYSTEMS

Key Words:

IQ Imbalance; MassiveMIMO; ZeroForcing; MIMO Receivers; Blind Detection

Summary:

This thesis analyses the problem of the received IQ imbalance in Massive-MIMO systems and proposes some solutions for it. Massive-MIMO represents an active trend in the research in communication systems due to the high spectral efficiency provided by it. Hence, the demand to resolve the IQ imbalance problem increases to allow using cheap hardware.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has

been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Aly Mahmoud Mohamed Abd-Ellatif	Date:
Signature:	

Dedication

To my father Mahmoud Mohamed, my mother, my brothers and sister, my wife and my son Mahmoud.

Acknowledgments

First of all, thanks to Allah for the continuous help throughout my whole life. I would like to thank my supervisors Prof.Yasmine Fahmy and Dr.Ahmed Hesham for their patience, the continuous guidance and for the technical and ethical aspects I have learnt from them. I would also like to thank my parents and my wife for the continuous support during all the masters journey. I would like also to thank my friend Mahmoud Elgenedy for his continuous encouragement.

Table of Contents

Li	st of '	Tables		vi
Li	st of]	Figures		vii
No	omen	clature		X
Al	ostrac	et		xi
1	Intr	oductio	o n	1
	1.1	Wirele	ess technology	. 1
	1.2		ess receivers	
	1.3	Introd	uction to MIMO	
		1.3.1	Capacity of MIMO systems	
			1.3.1.1 System capacity for AWGN	
			1.3.1.2 System capacity of frequency flat MIMO systems	
	1.4	•	Massive-MIMO	
	1.5		balance Imperfection	
		1.5.1	The ideal Zeros-IF QAM signal reception	
	1.6	1.5.2	IQI Different models	
	1.6		ture Survey	
	1.7		contribution	
	1.8	Organ	ization of the thesis	. 17
2	Ana	lysis of	IQ imbalance in Massive MIMO systems	18
	2.1	Introd	uction	
		2.1.1	The Ideal System Model (IQI-free model)	
		2.1.2	Channel Estimation	
		2.1.3	Data Detection	
	2.2	_	npaired System Model	
		2.2.1	The First Algorithm for IQI Compensation	
			2.2.1.1 Effective Channel Estimation	
			2.2.1.2 Data Detection for The First Algorithm	
		2 2 2	2.2.1.3 Performance analysis	
		2.2.2	Second IQI Estimation/Compensation Algorithm	
			2.2.2.1 Channel Estimation	
			2.2.2.2 Signal Detection	
		222	2.2.2.3 Performance Analysis	
		2.2.3	Third Algorithm (Blind Algorithm)	
			2.2.3.1 IQI Estimation	
			2.2.3.3 Data detection	
		2.2.4	Comparison in complexity between the algorithms	

3	Perf	ormano	ce re	sults	6																					44
	3.1	BER p	perfo	rmai	nce w	ith I	QI v	vith	ou	t c	or	nŗ	eı	ns	ati	ioı	1									44
3.2 Capacity performance																49										
	3.3 Uncoded Performance															53										
		3.3.1	QF	SK 1	erfo	rmar	nce																			53
		3.3.2		_	M per																					53
		3.3.3			M per																					54
		3.3.4			АМ ре																					58
		3.3.5			AM ı																					62
	3.4	Coded																								66
		3.4.1			M per																					66
		3.4.2		_	M per																					67
		3.4.3			M pe																					68
		3.4.4			AM 1																					70
4	Con	clusion	ıs an	d Fu	ture	wor	k																			73
	4.1	Conclu	usio	ns .																						73
	4.2	Future	e woi	rk.						•	•			•									•			74
References 75												75														

List of Tables

2.1	Hardware comparison between the pr	ropo	sec	l m	eth	ods	s fo	or l	[Q	I c	om	pe	ensa	atio	n	43
3.1	Coded BER simulations parameters															66