

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

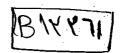
تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO



بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGINATION

ALEXANDRIA UNIVERSITY FACULTY OF ENGINEERING

DEPARTMENT OF IRRIGATION AND HYDRAULICS

THE BEHAVIOUR OF ANCHORED SCREW PILES TO RESIST VERTICAL AND HORIZONTAL PULL-OUT PRESSURES

A THESIS SUBMITTED FOR THE PARTIAL FULFILLMENT OF THE

MASTER OF SCIENCE DEGREE

IN CIVIL ENGINEERING

BY Wafaa Youssef Guindi

Supervised by

Prof. Dr. Mikhail Shaker Hanna

Professor of Irrigation and Irrigation structures design
Faculty of Engineering
Alexandria University

Dr. Mohamed Ahmad Abourehim Dr. Khaled Hassan Baghdadi

Associate Professor

Associate Professor

Department of Irrigation & Hydraulics

Department of Irrigation & Hydraulics

Faculty of Engineering

Faculty of Engineering

Alexandria University

Alexandria University

1994

We certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Master of Science.

Exam. Committee:

Prof. Dr. Mikhail Shaker Hanna

Professor of Irrigation and Irrigation Structures Design

Faculty of Engineering

Alexandria Universitý

Prof. Dr. Nazieh Asaad Younan

Professor of Irrigation Faculty of Engineering Alexandria University

N.A.

Prof. Dr. M. El. Neiazy Hammad

Vice Dean for Graduate Studies and Research 7

Faculty of Engineering

Ein Shams University

TO MY FATHER

In Appreciation And Gratitude For Everything

ACKNOWLEDGMENT

The writer wishes to express her deep thanks and deep appreciation to her supervisor, PROFESSOR Dr. MIKHAIL SHAKER HANNA Professor of Irrigation and Irrigation structures design, Faculty of Engineering, Alexandria University, for his valuable guidance, his continuous assistance, and encouragement throughout this research.

Thanks extended to her supervisors, Dr. MOHAMED AHMAD ABOUREHIM, and Dr. KHALED HASSAN BAGHDADI for their helpful suggestions and constant help.

Writer also records her thanks to the technicians Messrs. Metwally Gaber, Naser Abbas, Mamdouh Eid, Salem El-Sayed and Sahar Ahmed for their assistance and cooperation in the apparatus in the laboratory.

Synopsis

The necessity of knowing the characteristic behaviour of the screw anchor subjected to pull-out loads, either vertically horizontally, or inclined after failure, is the main target of the present work.

For this, a new system of loading was proposed, utilizing a compression spring to manifest the load through a tie rod to the screw anchor. The corresponding loads, after the elastic failure, were recorded. Extra pull-out spring displacements were applied and the loads were recorded and plotted against corrected depths.

Skin friction values, with the depth of embedment, as the main resisting force after the elastic failure, were computed for the vertical pull-out loads.

The existence of skin friction on the planes of failure is responsible, mainly for a stable resisting force between 70% to 80% of the maximum elastic load.

The new system of loading facilitated the experimental studies for horizontal and inclined pull-out after failure.

At the end of every test, sand removal in layers was carried out up to zero load.

Relations between the resisting forces, i.e. the loads, and the depths were given for the three positions of pull-out: the vertical, the horizontal and the inclined at 45°.

The effect of submergence and the upward seepage flow on horizontally pulled out anchors embedded in sand are also presented for failure and after failure conditions.

The presence of skin friction as the main resisting force for saturation and upward seepage flow conditions, after failure, is presented, but with an apparent decrease in the soil shear strength.

TABLE OF CONTENTS

TITLE	PAGE
Acknowledgments	· I
Synopsis	. 11
Table of contents	IV
Introduction	1
CHAPTER 1 : REVIEW OF PREVIOUS WORK	«
1-1: Vertical Anchors	
Krynine D. P.	3
Schank W.	3
Wayne C. Teng	5
Balla A.	5
Turner	6
Mariupolskii L.G.	7
Sutherland H.B.	8
Barker W.H. and Konder, R.L.	9
Vesic A.S.	9
Wahba M. A.	11
Diaz R.E.	11
Meyerhof G.G. and Adams J.I.	12
Little John G.S.	15
Saeedy H.	15
Healy k. A.	16
Wilson W.E.	17
Abdel-Malek, M.N.	17

Selvadurai A. P.	18
Samuel P. Clemence and Vessaert C. J.	21
Tsinker G. P.	27
Nasr A. N.	27
Fadl M. O.	31
Andreadis A. and Harvey R.C.	32
Chattopadhyay B. C. and Pise P. J.	34
Ashraf M. Ghaly	37
Scott R. F.	47
Murray E. J. and James D. Geddes	47
Edward A. Dickin	53
1-2: Inclined and Horizontal Anchors	·
1-2. Incimed and Horizontal Anchors	
John L. Clop and John B. Herbich	56
Braja M. Das and Seeley G. R.	63
Trofimenkov and Mariupolskii	64
Schmidt B.	. 66
Harvey R. C. and Burely E.	67
Kananyan A. S.	67
Murray E.J. and James D. Geddes	69
Neely W. J.	72
Larnach W. J.	73
Lendi P.	77
Yilmaz M.	77
Terzaghi K	79

1-3: Uplift behaviour of anchors subjected to	
hydrostatic and upward seepage flow conditions.	
Sutherland H. B.	86
Vesic A. S.	87
Radhakrishna H. S.	89
Abdel-Malek M. N.	89
Ashraf M. Ghaly	90
Veric A. S.	94
CHAPTER 2: THE EXPERIMENTAL WORK	
2-1: Introduction	99
2-2: Review of previous experimental apparatuses.	100
2-3: Apparatus used in the present work.	102
2-4: The use of the spring as the loading device.	107
2-5: The anchor used for the experimental work.	114
2-6: The granular material used for the experiments.	115
2-7: Method of placing the sand and the compaction	119
technique.	
CHAPTER 3: TEST PROGRAMME AND	
DISCUSSION UNDER DRY CONDITIONS	•
3-1: Introduction	122
3-2 : First Group of Tests (Vertical Pull-up)	
3-2-1 : Test No. 1	124
3-2-2 : Test No. 2	132
3-2-3 : Test No. 3	136

3-3 : Second Group of Tests (Horizontal Pull-out).	
3-3-1 : Test No. 4	143
3-3-2 : Test No. 5	149
3-3-3 : Test No. 6	149
3-4: Third Group of Tests (Inclined Pull-out).	
3-4-1 : Test No. 7	157
3-4-2 : Test No. 8	162
3-4-3 : Test No. 9	164
3-5: General Discussion	167
CHAPTER 4: TEST PROGRAMME AND DISCUSSIONS FOR PULLED -OUT ANCHORS UNDER SATURATED AND SEEPAGE FLOW CONDITIONS	
4-1 : Fourth Group of Tests (Horizontal pull-out	
anchors under saturation and upward seepage flow).	
4-1-1 : Experimental apparatus	172
4-1-2 : Properties of sand bed material	175
4-1-3 : Test procedure	178
4-1-4 : Test No. 10	181
4-1-5 : Test No. 11	184
Conclusions.	187
Recommendations.	189
Proposed Future research work.	190
References.	191