

Potential Modulatory Effect of Eugenol on Insulin Resistance in Experimental Model of Fatty Liver in Rats

A thesis submitted for the partial fulfillment of the master degree in Pharmaceutical Sciences

By

Mariam Hany Fawzy Azab

Bachelor of Pharmaceutical sciences, Egyptian Russian University (2013)

Teaching assistant of Pharmacology and Toxicology

Faculty of Pharmacy, Egyptian Russian University

Under the Supervision of:

Prof. Ebtehal EL-Demerdash Zaki

Professor and Head of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Dr.Doaa Mokhtar El-Sherbini

Lecturer of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Dr.Noha Mohamed Saeed

Lecturer of Pharmacology and Toxicology Faculty of Pharmacy, Egyptian Russian University

> Faculty of Pharmacy Ain Shams University 2019

"إلى هنا أعاننا الرب "

Acknowledgement

First of all, I would like to express my deepest gratitude and thankfulness to GOD; the most loving and caring, for giving me the will and strength to fulfill this work. Without his grace this thesis couldn't become a reality.

I am highly obliged in taking the opportunity to sincerely thank and express much gratitude to Prof. **Dr. Ebtehal El Demerdash Zaki**, Head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, for her advice, supervision and crucial contribution during the whole research process. Her mentorship was paramount in providing the experience needed for completing this study.

I would like to express my sincere gratitude to my advisor **Dr.Noha**Mohamed Saeed, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy,

Egyptian Russian University for her continuous support of my study and research,

for her patience, motivation, enthusiasm, and immense knowledge. Her guidance

helped me in all the time of research and writing of this thesis.

I am sincerely grateful to **Dr. Doaa Mokhtar El-Sherbini**, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, who has given her valuable support, cooperation and suggestions in successfully completing this thesis.

I would like to give everlasting thanks to my colleagues at the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, especially **Dr. Ahmed Atwa, Hasan Afifi, ,Mohamed Ezzat, Aya Mostafa, Safaa fahim, Amr Elgiz, Eslam Hassan, Manar Ismaiel, Manar Abdelsalam, Ahmed Nasr, Abdel aziz Saeed, Ali Elgendy** for their co-operation, understanding, and friendly advice during the work.

It is difficult to overstate my deepest appreciation to Prof. Dr. Ihab Mohamed Fetouh, Dean of Faculty of Pharmacy, Egyptian Russian University for his support and encouragement.

I owe special words of thanks to Dr. Shady Allam, lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Mostafa Fayed, assistant teacher of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University for their continuous support, advice and assistance.

Finally, my special thanks and blessings are heartily paid to my family members who I love my brother for inspiring, supporting me to pursue this degree, my parents for their love, support, and continuous care. They have always been there for me. They are the reason of what I become today. All that I am or hope to be, I owe to my family.

Mariam Hany Fawzy Azab

List of Contents

Contents Page	e
List of abbreviations	V
List of tablesV	II
List of Figures	X
Abstract	.1
Review of literature	.2
1.Non-alcoholic fatty liver disease	.2 .3 .5 .6 7 on 5 9 19 t 9 20 22 324
2.Eugenol2	28
2.1.Background2	
2.2.Chemistry2	
2.3.Pharmacokinetics2	9
2.4. Pharmacodynamics3	1
2.4.1. Anti-inflammatory & Anesthetic potential	
of eugenol3	31
2.4.2. Antioxidant activity of eugenol3	2

2.4.3. Neuro-protective & anti-stress related
perspectives of eugenol33
2.4.4. Anti-cancer activity of eugenol33
2.4.5. Anti-diabetic activity of eugenol34
2.4.6. Antimicrobial activity of eugenol34
2.4.7. Hypocholesterolemic activity of eugenol35
2.5. Toxicity
·
Aim of the work37
Materials and Methods40
1. Experimental design40
2. Materials42
2.1. Drugs42
2.2. Animals42
2.3. Chemicals43
2.4. High fat cholesterol diet composition45
2.5. Buffers46
2.6. Ready-made kits46
2.6.1. Kits for spectrophotometric analysis46
2.6.2.Enzyme-linked Immunosorbent Assay kits49
2.7. Antibodies 53
3. Methods55
3.1. Spectrophotometric Assessment55
3.1.1. Determination of serum alanine
aminotransferase55
3.1.2.Determination of serum aspartate
aminotransferase56
3.1.3.Determination of serum triglycerides58
3.2. Enzyme linked immunosorbent assay
assessment60
3.2.1.Assessment of Tumor Necrosis Factor-α60
3.2.2.Assessment of Interleukin-663
3.2.3.Assessment of nuclear factor- kappa B67
3.2.4. Assessment of insulin70
3.2.5. Assessment of protein

List of contents

3.2.6. Assessment of Malondialdehyde77
3.2.7. Assessment of reduced glutathione80
3.3.Western blot technique Assessment83
3.3.1. Assessment of nuclear erythroid related factor
-2 cytoprotective marker and insulin receptor-2
expression83
3.4. Immunohistochemistry technique Assessment
3.4.1. Assessment of transforming growth factor-
beta and alpha-smooth muscle actin and by
immunohistochemistry technique86
3.5. Histopathological examination87
3.6. Assessment of insulin resistance by HOMA-IR88
3.7. Statistical analysis88
Results89
Discussion
Summery and Conclusion129
References
Arabic summery159

List of abbreviations

α-SMA	Alpha-Smooth muscle actin
4-AAP	4-Aminoantipyrine
ABC	Avidin-Biotin-Peroxidase Complex
ADP	Adenosine diphosphate
ALT	Alanine aminotransferase
ANOVA	One-way analysis of variance
AST	Aspartate aminotransferase
ATP	Adenosine triphosphate
BCA	bicinchoninic acid
BSA	Bovine serum albumin
Conc	Concentration
Cu ⁺	Cuprous ion
DNL	De novo lipogenesis
DNPH	Dinitrophenyl-hydrazine
ECL	Enhanced chemiluminescence
EIA	Enzyme immunoassay
EUG	Eugenol
FA	Fatty acid

FFA	Free fatty acids
GK	Glycerol kinase
GPO	Glycerol phosphate oxidase
GSH	Glutathione
h	Hours
H & E	Haematoxylin and eosin
H ₂ O ₂	Hydrogen peroxide
H ₂ SO ₄	Sulpheric acid
HCl	Hydrochloric acid
HFCD	High fat cholesterol diet
HOMA-IR	Homeostasis model assessment for insulin resistance
HRP	Horseradish peroxidase
HSCs	Hepatic stellate cells
ІККВ	Inhibitor of kappa B kinase β
IL-6	Interlukin-6
IR	Insulin Resistance
IRS-1	Insulin receptor substrate-1
IRS-2	Insulin receptor substrate-2
KCL	Potassium chloride

L	Liter
LPL	Lipoprotein lipase
MDA	Malondialdehyde
NaCl	Sodium chloride
NAFLD	Non-alcoholic fatty liver disease
NaOH	Sodium hydroxide
NASH	Non-alcoholic steatohepatitis
NF-ĸB	Nuclear factor-κΒ
Nrf-2	Nuclear factor erythroid-2-related factor 2
OD	Optical density
PBS	Phosphate buffered saline
POD	Peroxidase
PVDF	Polyvinylidiene Difluride
ROS	Reactive oxygen species
RS	Resistant stress
SAMe	S-adenosylmethionine
SDS	sodium dodecyl sulphate
SOCS	Suppressor-of –cytokine- signaling
SREBP-1C	Sterol regulatory element binding protein-1C

List of Abbreviation

TBS	Tris buffer saline
TBST	Tris buffer saline with tween 20
TGF-β	Transforming growth factor- β
TGs	Triglycerides
TMB	3,3',5,5'-Tetramethylbenzidine
TNF-α	Tumor necrosis factor- α
TZD	Thiazolidinedione

List of tables

Table no.	Title	Page
1	Effect of EUG co-treatment on Body weight, liver index, serum levels of ALT, AST & TGs in rats fed HFCD	83
2	Effect of EUG co-treatment on HOMA-IR in rats fed HFCD	91
3	Effect of EUG co-treatment on IRS-2 expression in rats fed HFCD	93
4	Effect of EUG co-treatment on serum TNF-α, IL-6 and liver levels of NF-κB in rats fed HFCD	96
5	Effect of EUG co-treatment on liver MDA and GSH in rats fed HFCD	101
6	Effect of EUG co-treatment on Nrf-2 expression in rats fed HFCD	104
7	Effect of EUG co-treatment on expression of TGF- β and α - SMA in rats	107

List of Figures

Figure no.	Title	page
1	Illustration showing imbalance between lipid input and output contributing to triglycerides accumulation representing hallmark of NAFLD	3
2	Illustration showing plausible interactions of oxidative stress and IR in NAFLD	6
3	Illustration showing IR state	8
4	Development of nonalcoholic hepatic steatosis	8
5	Adipocyte transformation during weight gain in NAFLD	10
6	Regulation of insulin resistance and involved pathways	12
7	Illustration showing correlation between IRS-2 and SREBP-1c in NAFLD	13
8	Mechanisms leading to hepatocyte dysfunction, inflammation, and fibrosis in NASH	15
9	The structure of EUG	27

10	Previous mechanism of action of EUG and its possible sites of action	30
11	Standard calibration curve for TNF-α	57
12	Standard calibration curve for IL-6	61
13	Standard calibration curve for NF-кВ	64
14	Standard calibration curve for insulin	69
15	Standard calibration curve for protein	70
16	Standard calibration curve for MDA	73
17	Standard calibration curve for GSH	75
18	Effect of EUG co-treatment on (A) body weight and (B) liver index in rats fed HFCD	84
19	Effect of EUG co-treatment on serum ALT activity in rats fed HFCD	85
20	Effect of EUG co-treatment on serum AST activity in rats fed HFCD	86