

Prevalence of Bacterial Gastroenteritis among Hospitalized Infants and Children with Acute Diarrhea in Pediatric Hospital, Ain Shams University

Thesis

Submitted for Partial Fulfillment of Master Degree in **Pediatrics**

By

Ola Mohamed Abdelfatah

M.B.B.Ch (2014)

Under Supervision of

Prof. Dr. Mohamed Ashraf AbdelWahed

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Yosra Mohamed Awad

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Nagwa Mahmoud Ahmed

Lecturer of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohamed Ashraf**Abdel Wahed, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Yosra Mohamed**Awad, Lecturer of Pediatrics, Faculty of Medicine, Ain
Shams University, for her sincere efforts, fruitful
encouragement.

I am deeply thankful to **Dr. Magwa Mahmoud Ahmed**, Lecturer of Medical Microbiology and
Immunology, Faculty of Medicine, Ain Shams University,
for his great help, outstanding support, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Ola Mohamed Abdelfatah

List of Contents

Title	Page No.
List of Tables	5
List of Figures	8
Introduction	1 -
Aim of the Work	13
Review of Literature	
Gastroenteritis	14
Bacterial Infection and Gastroenteritis	63
Subjects and Methods	79
Results	93
Discussion	119
Summary	125
Conclusion	
Recommendations	130
References	131
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table 1:	Studies showing morbidity and mort diarrhea	•
Table 2:	Features of small intestinal and iled disease	
Table 3:	Symptoms Associated With Dehydrati	on41
Table 4:	Indications for medical evaluation of with acute diarrhea	
Table 5:	Composition of Commercial Rehydration Solutions (ORS) and Cor Consumed Beverages	nmonly
Table 6:	Summary of Treatment Based on the of Dehydration	-
Table 7:	Types of bacterial gastroenteritis a	64
Table 8:	Socio-demographic and environment of all patients.	
Table 9:	Analysis of diarrhea and vomiting synamong the patients	_
Table 10:	Clinical data of all patient	95
Table 11:	The result of bacteriological examina stool sample.	
Table 12:	The result of PCR assessment o positive stool culture	
Table 13:	Reveal comparison between EAEC and other cases infected by other spec	L
Table 14:	Reveal comparison between EPEC and other cases infected by other speci	

Tist of Tables cont...

Table No.	Title	Page No.
Table 15:	Reveal comparison between DAEC and other cases infected by other spec	-
Table 16:	Reveal comparison between ETEC and other cases infected by other spec	-
Table 17:	Reveal comparison between ET positive and other cases infected by species.	y other
Table 18:	Reveal comparison between EIEC and other cases infected by other spec	-
Table 19:	Comparison between cases with obacterial infection as sociodemographic data.	regard
Table 20:	Show comparison between case different bacterial infections as revomiting and diarrhea	gard to
Table 21:	Comparison between cases infected different bacterial species as regularized data	gard to
Table 22:	Comparison between cases infected different bacterial species as reg association with fungal infection	ards to
Table 23:	Comparison between cases infected fungal infection and those with a fungal infection as regard sociodemographic data.	negative ls to
Table 24:	Comparison between cases infected fungal infection and other as reanalysis of vomiting and diarrhea data	ed with gard to

Tist of Tables cont...

Table No.	Title	Page No.
Table 25:	Comparison between cases with infection and other not infected a clinical data	s regard
Table 26:	Comparison between cases with infection and other not infected as reand stoll culture	egard Ph
Table 27:	Antimicrobial susceptibility of salmo	nella116
Table 28:	Antimicrobial susceptibility of E.coli	117
Table 29:	Antimicrobial susceptibility of shigel	la118

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Rotavirus particles seen under the ele	
Figure 2:	A positive double-disk synergy test	88
Figure 3:	Over all prevelance of bacterial infection	on97
Figure 4:	Prevelance pf fungal infection	97
Figure 5:	Comparison between cases infected different bacterial species as consist nature of diarrhea	tency
Figure 6:	Comparison between cases infected different bacterial species as recharacter of diarrhea.	egard
Figure 7:	Comparison between cases infected different bacterial spaecies as regard t of weight.	o loss
Figure 8:	Comparison between cases infected fungal infection and other non infect regard to age	ed as
Figure 9:	Comparison between cases infected fungal infection and other non infect regard to age	ed as
Figure 10:	Comparison between cases infected different bacterial species as regar fungal infection.	rd to
Figure 11:	Antimicrobial susceptibility of salmone	ella116
	Antimicrobial susceptibility of E.coli	
Figure 13:	Antimicrobial susceptibility of shigella	118

Introduction

diseases and a significant cause of morbidity after upper respiratory tract infections. It accounts for a large proportion (18%) of childhood deaths, with an estimated 1.5 million deaths per year, making it the second most common cause of child deaths worldwide. The World Health Organization (WHO) and The United Nations Children's Fund (UNICEF) estimate that almost 2.5 billion episodes of diarrhea occur annually in children younger than five years in developing countries, with more than 80% of these cases occurring in Africa and South Asia (46% and 38%, respectively) (*Bhutta*, 2011).

Acute gastroenteritis is generally defined as decrease in the consistency of stool or an increase in frequency of evacuation typically by 3 times in 24 hr with or without vomiting and fever, however change in stool consistency versus previous consistency of stool is more indicative of diarrhoea than number of motions. Acute diarrhoea typically last for 7 days and not more than 14 days, persistent diarrhoea last (2–4 weeks), and chronic last for (greater than 4 weeks) (*Guarino*, 2014).

The major pathogens causing acute infectious diarrhoea are viruses, bacteria, and parasites. Most cases are self-limited and resolve within 24–48h, and in developed nations, the aetiology is likely to be viral (*Jones et al.*, 2004).

Pathogens affecting the small intestine are usually noninvasive organisms. These patients present with high-volume watery stools and in some cases mal absorption, frequently leading to dehydration. Patients often have peri umbilical pain and cramping. The most common pathogens in this category are viruses, such as noro virus and rota virus, but also include bacteria: enter toxigenic E. coli, Vibrio cholera, toxinproducing Staphylococcus aureus, and the parasites Giardia lamblia. belli. cryptosporidium. These Isospora and enteropathogens typically cause disease via enterotoxin production, ingestion of preformed toxin, and/or bacterial adherence to epithelial cells, Colonic and distal small intestinal pathogens are more likely to be invasive. They result in a syndrome of lower abdominal pain; small volume, frequent stools which can be bloody and tenesmus (when the rectum is involved) The most common pathogens causing presentation are bacteria including Campylobacter, Shigella, Salmonella and Shigatoxin-producing Ecoli, and Clostridium difficil (Thielman et al., 2004).

Since there are individual and public health risks associated with antimicrobial therapy, it is generally best to await results of diagnostic testing before treating. Some risks of antibiotics include inducing TTP/HUS (Thrombotic thrombocytopenic purpura /Hemolytic uremic syndrome) with STEC (shiga toxin producing Ecoli) infection, increasing antimicrobial resistance, exposing patients to side effects of

antibiotic therapy and increasing the risk of prolonged carrier stage and relapses in non-typhoid Salmonella infections. However, in certain situations, the benefits of empiric therapy outweigh the risks. Empiric therapy is thus recommended for the following situations: severe illness requiring hospitalization (particularly admission to an intensive care unit), moderate-tosevere traveler's diarrhea, elderly or immunocompromised hosts, suspected C. difficile colitis with severe disease, suspected shigellosis, or persistent diarrhoea with suspected Giardia. If these conditions are not present, or there is suspicion for STEC (bloody diarrhoea and absence of fever) or nontyphoidal Salmonella, or clinical uncertainty is present, it is most appropriate to wait for culture results before treating (*Rahouma et al.*, 2011).

As new antimicrobial resistance patterns are continually emerging, it is important to check frequently updated sources for antimicrobial recommendations, the American College of Gastroenterology recommends a routine stool culture for a patient who presents with any of the following symptoms: severe or persistent diarrhoea, temperature of 38.5°C, bloody diarrhoea, or the presence of stool leukocytes, lactoferrin, or occult blood (DuPont, 1997).

The Infection Disease Society of America similarly recommends that stool cultures be performed for a patient with diarrhoea for 1 day, fever, dehydration, systemic illness, bloody

stools, or a clinical history that would include bacterial pathogens in the differential diagnosis (Guerrant et al., 2001).

The choice of the antimicrobial agent depends on the the pathogens prevalence of 3 (Shigella Campylobacter spp, and Salmonella enterica and the resistance patterns. In children with watery diarrhoea, antibiotic therapy is not recommended unless the patient has recently traveled or may have been exposed to cholera.

Bloody diarrhoea with low or no fever is typical of STEC (enterohemorrhagic E coli), but can be mild shigellosis or salmonellosis. Antibiotics are not recommended unless epidemiology suggests shigellosis. Parenteral rather than oral antibiotic therapy is recommended for: Patients unable to take oral medications (vomiting, stupor, etc). Patients with underlying immune deficiency who have AGE with fever 3. Severe toxaemia, suspected or confirmed bacteraemia 4. Neonates and young infants (<3 months) with fever. Sepsis workup and antibiotics should be considered according to local protocol (Guarino, 2014).

AIM OF THE WORK

The aim of this study is to identify frequency of the most common bacterial pathogen causing acute gastroenteritis in infant and children and determine their antimicrobial susceptibility patterns at Ain shams University

Chapter 1

GASTROENTERITIS

cute gastroenteritis defined by the Infectious Diseases Society of America (IDSA) and the American College of Gastroenterology (ACG).as the passage of three or more loose or watery stools per day (or more frequent passage of stool than is normal for the individual) (*Guerrant and DuPont, 1997*).

Stool patterns may vary among children; thus, it is important to note that diarrhea should represent a change from the normal. Frequent passage of formed stools is not diarrhea, nor is the passing of pasty stools by breast fed young infants (Guerrant et al., 2001; Elli et al., 2007).

There are three clinical classifications of diarrheal conditions:

- Acute diarrhea, lasting several hours or days
- Acute bloody diarrhea or dysentery
- Persistent diarrhea, lasting 14 days or longer

Infectious diarrhoea is a significant cause of illness and death among children under 5 years of age in lower source countries. It accounts for 9% of all deaths globally in this age group, and ranks only second to pneumonia (UNICEF, 2012).

The majority of these cases are associated with the first two years of life, with peak ages being between 6 and 11 months (*Walker et al.*, 2013).

Epidemiology and magnitude of the problem:

Acute gastroenteritis is an extremely common illness among infants and children worldwide. According to the *Centers for Disease Control and Prevention (CDC)*, worldwide as many as 4,000,000 children per year die because of gastroenteritis and resulting dehydration, malnutrition, electrolyte abnormalities, shock, and cardiac arrest; all are potentially preventable causes (*Gastanaduy & Begue*, 1999).

Over 1.7 billion global cases of diarrheal disease are reported annually and are associated with an estimated 2.2 million deaths. The burden of diarrheal disease is most critical in developing countries, facilitated by unsafe water supplies, poor sanitation, and nutritional deficiencies. Diarrheal disease in children aged 5 years in these countries is devastating, where repeated diarrheal episodes contribute to malnutrition, which in turn puts these children at heightened risk of acquiring infectious diarrhea and is associated with stunting and impaired cognitive development (*Walker et al.*, 2013).

While less common in high-income countries, diarrheal diseases remain a significant health concern.