DEVELOPMENT OF DYKES FOR MAXIMIZING UTILIZATION OF RAINWATER IN SOME WADIES IN THE NORTH WESTERN COAST, EGYPT

Submitted By

Mohamed Mostafa Ahmed Mohamed Elqady

B.Sc. Engineering (Civil Engineering), Faculty of Engineering, Zagazig University, 1992 Master in Civil Engineering, Faculty of Engineering, Helwan University, 2005

> A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree In

Environmental Sciences
Department of Environmental Engineering Sciences

Under The Supervision of:

1- Prof. Dr. Nagy Ali Ali Hassan

Prof. of Irrigation and Drainage, Irrigation and Hydraulics Department Faculty of Engineering
Ain Shams University

2- Prof. Dr. Hesham Ibrahim El-Kassas

Prof. of Soil and Water Environment, Department of Environmental Engineering
Dean, Institute of Environmental Studies & Research
Ain Shams University

3- Prof. Dr. Noha Samir Donia

Prof. of Environmental Hydraulics & Head of Department of Environmental Engineering Sciences - Institute of Environmental Studies & Research Ain Shams University

4- Prof. Dr. Mohamed Mohamed Abdou Wasseif

Emeritus Prof. of Soil Sciences Desert Research Center

APPROVAL SHEET

DEVELOPMENT OF DYKES FOR MAXIMIZING UTILIZATION OF RAINWATER IN SOME WADIES IN THE NORTH WESTERN COAST, EGYPT

Submitted By

Mohamed Mostafa Ahmed Mohamed Elgady

B.Sc. Engineering (Civil Engineering), Faculty of Engineering, Zagazig University, 1992 Master in Civil Engineering, Faculty of Engineering, Helwan University, 2005

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences This thesis Towards a Doctor of Philosophy Degree in Environmental Sciences Has been Approved by:

Name Signature

1- Prof. Dr. Ashraf Mohamed El Mostafa

Prof. of Hydraulics, Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

2- Prof. Dr. Alaa El Din Abd El Fattah Ali

Prof. of Soil

Desert Research Center

3- Prof. Dr. Nagy Ali Ali Hassan

Prof. of Irrigation and Drainage, Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

4- Prof. Dr. Hesham Ibrahim El-Kassas

Prof. of Soil and Water Environment, Department of Environmental Engineering

Dean, Institute of Environmental Studies & Research Ain Shams University

5- Prof. Dr. Noha Samir Donia

Prof. of Environmental Hydraulics & Head of Department of Environmental Engineering Sciences - Institute of Environmental Studies & Research Ain Shams University

2019

DEVELOPMENT OF DYKES FOR MAXIMIZING UTILIZATION OF RAINWATER IN SOME WADIES IN THE NORTH WESTERN COAST, EGYPT

Submitted By Mohamed Mostafa Ahmed Mohamed Elqady

B.Sc. Engineering (Civil Engineering), Faculty of Engineering, Zagazig University, 1992 Master in Civil Engineering, Faculty of Engineering, Helwan University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

Acknowledgment

First of all, thanks to Allah the almighty who enabled me to finish this work

I wish to express my sincere appreciation and whole-hearted gratitude to **Prof. Dr.: Nagy Ali Ali Hassan** Professor of Irrigation and Drainage - Faculty of Engineering - Ain Shams University for his supervision, guidance, kind help, criticism, appreciable ideas, continuous support, and deep interest throughout the course of this study and preparation of the manuscript

I am deeply indebted to **Prof. Dr.: Hesham Ibrahim El-Kassas** Professor of Soil and Water Environment- Dean of Institute of Environmental Studies and Research - Ain Shams University and **Prof. Dr.: Noha Samir Donia** Professor of Environmental Hydraulics- Head of Environmental Engineering Department Institute of Environmental Studies and Research - Ain Shams University for their continuous encouragement, valuable advices and fruitful supervision throughout the study which has resulted in achievement of this study

All thanks and deepest gratitude to Prof. Dr.: Mohamed Mohamed Abdou Wasseif Professor of Soil Science - Desert Research Center for his supervision. He has provided me with valuable training, guidance, encouragement and experience. it is clear that without his continuous support, valuable advices and many valuable suggestions, this study would have been more difficult to appear.

Finally, I wish to thank most specially my parents, wife, sisters, and sons for their patience, constant support and encouragement.

Abstract

Wadi-bed cultivation is one of the main macro catchment water harvesting system in the Northwestern Coast Zone (NWCZ) which depends on construction of cement dykes across the main stream of the wadi. The main problems resulting from these dykes are unequal distribution of surface runoff, where less runoff reaches the downstream and losing part of the surface runoff at high rainfall storms. This study aimed to evaluate and develop the existing dykes in two wadis represented to the NWCZ wadies, they were wadi Hashim and wadi Shebity located at about 50 and 70 km east and west of Marsa Matrouh city respectively. To achieve the study objectives, many activities were carried out in field, laboratory and office to estimate the runoff volume using Soil Conservation Services Curve Number (SCS-CN) method and the Geographical Information System (GIS), calculate the storage capacity of dykes and fig water requirements for each cultivated area. The evaluation aspects included the percentage of stored runoff, runoff distribution, stored runoff relative to fig water requirements and area of existing cultivated land relative to the potential. The development of dykes depended on studying the effect of spillway height of 20, 30, 40, and 50 cm on the efficiency of the dykes. The results showed that the existing dykes were not suitable for agricultural development under the conditions of NWCZ for both wadies. To Maximize rainwater utilizing in wadi Hashim, the spillways must be constructed at different heights of 20 or 30 cm according to the dyke position along the wadi main stream in addition to constructing water harvesting techniques with total storage capacity of 64364 m³. However, in wadi Shebity, the spillways must be constructed at different heights of 20 or 30 or 40 or 50 cm in addition to constructing water harvesting techniques with total storage capacity of 12360 m³. It is concluded that the methodology described in this study for evaluation and development of the dykes could be applied in other wadies, but with different results according to the watershed area and its physical characteristics, rainfall, the cultivated land area and crop type. The present study reached out for some recommendations to maximize rainwater utilizing in terms of constructing new additional dykes and other water harvesting techniques such as cisterns or tanks and decreasing the distances between fig trees, particularly for the cultivated area in upstream

Keywords:

Macro-catchment water harvesting, Northwestern Coast Zone, surface runoff, dykes, SCS-CN, GIS, spillway

List of Contents

Title P	age No.
List of Tables	III
List of Figures	\mathbf{V}
List of Appendices	XII
1. INTRODUCTION	1-3
2. REVIEW OF LITERATURE	4-26
2.1. Rainfall and runoff	4
2.1.1. Rainfall - Runoff in the Mediterranean region	4
2.1.2. Types of runoff	5
2.1.3. Factors affecting runoff	6
2.1.4. Rainfall – Runoff relationships	8
2.1.5. Potential runoff quantification methods	11
2.2. Water harvesting	13
2.2.1. Definition of water harvesting	13
2.2.2. Water harvesting principle	13
2.2.3. Components of water harvesting	14
2.2.4. Classification of water harvesting methods and techniques	14
2.2.5. Design inputs of water harvesting systems	19
2.2.6. Sustainability of water harvesting systems	19
2.3. Water harvesting systems and techniques in the Northwestern Coast Zone (NWCZ)	20
2.3.1. The micro catchment water harvesting system	20
2.3.1.1 Small pits	20
2.3.1.2. Semi-circular bunds	21
2.3.2. The macro catchment water harvesting system	21
2.3.2.1. Tanks	21

Title P	age No.
2.3.2.2. Cisterns	. 22
2.3.2.3. Small dames (dykes)	24
3. MATERIALS AND METHODS	27-49
3.1. Description of the study area	. 27
3.1.1. Location	27
3.1.2. Climate	27
3.1.3. Geomorphology	29
3.2. Methodology of the study	30
3.2.1. Monitoring and evaluation of the existing dykes	32
3.2.1.1. Storage capacity of each dyke	32
3.2.1.2. Fig water requirements for each cultivated area	33
3.2.1.3. Potential runoff volume at positions of the dykes	33
3.2.1.4. Evaluation aspects	47
3.2.2. Development of the dykes	49
4. RESULTS AND DISCUSSION	50-109
4.1. Wadi Hashim	50
4.1.1. Evaluation of the existing dykes	50
4.1.1.1. Properties of the existing dykes	50
4.1.1.2. Fig water requirements	51
4.1.1.3. Potential runoff volume at each dyke	54
4.1.1.4. Percentage of stored runoff	66
4.1.1.5. Percentage of runoff distribution	67
4.1.1.6. Percentage of stored runoff relative to fig water requirement	
4.1.1.7. Percentage of existing cultivated land area relative to the potential	
4.1.2. Development of the existing dykes	71

Title Pa	age No.
4.1.2.1. Effect of spillway height on the percentage of stored runoff	71
4.1.2.2. Effect of spillway height on the percentage of runoff distribution	73
4.1.2.3. Effect of spillway height on the percentage of stored runoff relative to fig water requirements	76
4.2. Wadi Shebity	81
4.2.1. Evaluation of the existing dykes	81
4.2.1.1. Properties of the existing dykes	81
4.2.1.2. Fig water requirements	81
4.2.1.3. Potential runoff volume at each dyke	84
4.2.1.4. Percentage of stored runoff	96
4.2.1.5. Percentage of runoff distribution	97
4.2.1.6. Percentage of stored runoff relative to fig water requirement	99
4.2.1.7. Percentage of existing cultivated land area relative to the potential	101
4.2.2. Development of the existing dykes	102
4.2.2.1 Effect of spillway height on the percentage of stored runoff	102
4.2.2.2. Effect of spillway height on the percentage of runoff distribution	103
4.2.2.3. Effect of spillway height on the percentage of stored relative to fig water requirements	105
5. SUMMARY AND CONCLUSION	110-119
6. REFERENCES	120-130
7. APPENDICES	131-172
ARABIC SUMMARY	

List of Tables

No.	Title	Page
1	The monthly rainfall storms of wadi Hashim from season 1998/1999 to 2014/2015	
2	The monthly rainfall storms of wadi Shebity to from season 1998/1999 to 2014/2015	35
3	The sub-watersheds areas of wadi Hashim watershed	55
4	The areas of land use classes of wadi Hashim watershed	57
5	Particles size distribution and soil texture of wadi Hashim watershed	57
6	The infiltration rates of the soil at five different positions in both cultivated area and bare soil of wadi Hashim watershed	60
7	The areas of hydrological soil group classes of wadi Hashim watershed	61
8	The curve numbers (CN), composite curve numbers (CNc) and initial abstraction (Ia) values of the sub watersheds of wadi Hashim	62
9	The runoff volumes of the monthly rainfall storm of the average season (2005/2006) of wadi Hashim watershed	65
10	The runoff volumes and percentages of the stored for each monthly rainfall storm by the existing dykes in wadi Hashim watershed	
11	The total volume of stored runoff and fig water requirements for the cultivated areas/ season at the existing dykes of wadi Hashim watershed	69
12	The existing and potential cultivated land area of wadi Hashim watershed	71

No.	Title	Page
13	Effect of spillway height on the percentage of stored runoff in wadi Hashim watershed	72
14	Effect of spillway height on the percentage of runoff distribution in wadi Hashim watershed	75
15	Effect of spillway height on the percentage of the total stored runoff relative to fig water requirement/ season in wadi Hashim watershed	78
16	The design of dykes and water harvesting techniques of wadi Hashim watershed	79
17	The sub-watersheds areas of wadi Shebity watershed	85
18	The areas of land use classes of wadi Shebity watershed	85
19	Particles size distribution and soil texture of wadi Shebity watershed	87
20	The infiltration rates of the soil at five different positions in both cultivated area and bare soil of wadi Shebity watershed	90
21	The areas of hydrological soil group classes of wadi Shebity watershed	91
22	The curve numbers (CN), composite curve numbers (CNc) and initial abstraction (Ia) values of the sub watersheds of wadi Shebity	92
23	The runoff volumes of the monthly rainfall storm of the average season (2005/2006) of wadi Shebity watershed	
24	The runoff volumes and percentages of the stored for each monthly rainfall storm by the existing dykes in wadi Shebity watershed	97

No.	Title	Page
25	The total volume of stored runoff and fig water requirements for the cultivated areas/ season at the existing dykes of wadi. Shebity watershed	
26	The existing and potential cultivated land area of wadi Shebity watershed	
27	Effect of spillway height on the percentage of stored runoff in wadi Shebity watershed	
28	Effect of spillway height on the percentage of runoff distribution in wadi Shebity watershed	
29	Effect of spillway height on the percentage of the total stored runoff relative to fig water requirement/ season in wadi Shebity watershed	
30	The storage capacity of the designed dykes	108
31	The design of dykes and water harvesting techniques of wadi Shebity watershed	

List of Figures

No.	Title	Page
1	Classification of water harvesting system	16
2	Types of water harvesting related to the water sources	17
3	Micro-catchment system	18
4	Macro-catchment system	18
5	Tank in the Northwestern Coast Zone	22
6	Cistern in the Northwestern Coast Zone	23
7	Earthen dyke in the Northwestern Coast Zone	25
8	Rock dyke in the Northwestern Coast Zone	25
9	Cement dyke in the Northwestern Coast Zone	26
10	Location of the study area	28
11	Geomorphology of the study area	30
12	The layout of the methodology used in the present study	31
13	Measuring one of the dykes in wadi Hashim	32
14	Carrying out grid leveling in the study area	33
15	The digital elevation model (DEM) of wadi Hashim	38
16	The digital elevation model (DEM) of wadi Shebity	39
17	The Arc Map GIS 10.1 software hydrological steps	40
18	The positions of infiltration tests and soil samples in wadi	
19	The positions of infiltration tests and soil samples in wadi	44
20	Double Ring Infiltrometer setup	45

No.	Title	Page
21	Carrying out infiltration test using Double Ring Infiltrometer	45
22	Locations of the existing dykes in wadi Hashim watershed Cement dyke in wadi Hashim	52
23	Cement dyke in wadi Hashim	53
24	The storage capacity of the existing dykes of wadi Hashim watershed	53
25	Fig water requirements for the cultivated areas in wadi Hashim watershed	54
26	The stream network, watershed and sub-watersheds (S.W.) of wadi Hashim	55
27	Land use classes of wadi Hashim watershed	56
28	The infiltration rate -time curve of the soil of position (1) in wadi Hashim watershed	58
29	The infiltration rate-time curve of the soil of position (2) in wadi Hashim watershed	58
30	The infiltration rate -time curve of the soil of position (3) in wadi Hashim watershed	59
31	The infiltration rate-time curve of the soil of position (4) in wadi Hashim watershed	59
32	The infiltration rate-time curve of the soil of position (5) in wadi Hashim watershed	60
33	The composite curve numbers (CNc) of the sub watersheds of wadi Hashim	
34	The annual rainfall -runoff volumes of wadi Hashim watershed for 17 seasons	64
35	The monthly rainfall storms of the average season (2005/2006) of wadi Hashim watershed	64

No.	Title	Page
36	The runoff volumes of the monthly storms of the average season (2005/2006) in wadi Hashim watershed	65
37	Runoff distribution at the existing dykes for each monthly storm of the average season (2005/2006) in wadi Hashim watershed	
38	The percentages of runoff distribution at the existing dykes for each monthly storm of the average season (2005/2006) in wadi Hashim watershed	
39	The depth of stored runoff and fig water requirements for the cultivated areas/ season at existing dykes of wadi Hashim watershed	70
40	The volume of stored runoff and fig water requirements for the cultivated areas/season at existing dykes of wadi Hashim watershed	70
41	Effect of spillway height on runoff distribution for rainfall storm of 11 mm in wadi Hashim watershed	73
42	Effect of spillway height on runoff distribution for rainfall storm of 19 mm in wadi Hashim watershed	74
43	Effect of spillway height on runoff distribution for rainfall storm of 24 mm in wadi Hashim watershed	74
44	Effect of spillway height on runoff distribution for rainfall storm of 48 mm in wadi Hashim watershed	75
45	Effect of spillway height on the percentage of stored runoff volume relative to fig water requirements/ season in wadi Hashim watershed	
46	Effect of spillway height on the percentage of stored runoff volume relative to fig water requirements/ season in wadi Hashim watershed	78