Dual Energy X-ray Absorptiometry (DEXA) and Vitamin D status in children and adolescents patients with severe hemophilia A and type 1 diabetes mellitus

Thesis

Submitted for Fulfillment of Master Degree
in Pediatrics

By Raguia Atef Mostafa

M.B.B.CH.of medicine 2012

Under Supervision of Dr. Nevine Gamal Andrawes

Professor of Pediatrics Pediatrics department Ain Shams University

Dr. Manal Hashem Ahmed Fayek

Professor of Clinical Pathology Clinical Pathology department Ain Shams University

Dr. Nouran Yousef Salah El-Din

Lecturer of Pediatrics Pediatrics department Ain Shams University

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I was honored to work under the supervision of Or. Mevine Gamal Andrawes, Professor of Pediatric Faculty of Medicine Ain Shams University, for her vital assistance and unlimited co-operation. She had generously offered me much of her time, precious advice and variable guidance throughout this work.

I wish to express my deepest thanks and gratitude to **Dr. Manal Washem Ahmed Fayek**, Professor of Clinical Pathology Faculty of Medicine Ain Shams University, for her close supervision, generous efforts and constant encouragement. She had scarified a lot of her busy time to teach me and revise over step of this thesis.

I would like to express my sincere thanks to **Dr. Mouran Yousef Salah & Din,** Lecturer of Pediatrics Faculty of Medicine Ain Shams University, who kindly offered me much of her time, experience, valuable help and effort.

To my family, all my colleagues and all those who helped me in this work, I am so thankful for their support and co-operation.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Raguia Atef Mostafa

List of Contents

Title	Page No.
List of Tables	i
List of Figures	i
List of Abbreviations	iv
Introduction	1
Aim of the Work	15
Review of Literature	
Vitamin D	16
Dual Energy X-Ray Absorptiometry (DEXA)	25
Hemophilia	41
Diabetes Mellitus	52
Vitamin D and severe hemophilia A	76
Vitamin D and type 1 diabetes mellitus	83
Patients and Methods	91
Results	103
Discussion	142
Summary	154
Conclusion	146
Recommendation	157
References	158
Arabic Summary	

List of Tables

Table No.	Title Page	No.
Table (1):	Etiologic classification of diabetes mellitus	53
Table (2):	Categories of increased risk for diabetes (Prediabetes)	70
Table (3):	Demography and Clinical examination of the studied patients with severe hemophilia A.	103
Table (4):	Laboratory and DEXA values in patients with severe hemophilia A.	105
Table (5):	Demographic data and clinical examination of patients with type 1 diabetes mellitus.	106
Table (6):	Laboratory and radiological data of patients with type 1 diabetes mellitus	107
Table (7):	Comparison of anthropometric measures in patients with type 1 diabetes mellitus and control group	108
Table (8):	Comparison of anthropometric measures in patients with severe hemophilia A and control	
Table (9):	Comparison of laboratory and radiologic measures in patients with type 1 diabetes mellitus and control group.	110
Table (10):	Comparison of laboratory and radiological measures in group of severe hemophilia A and control group.	
Table (11):	Comparison of anthropometric, laboratory and radiological measures in patients with severe hemophilia A on demand treatment	
	and those on prophylactic treatment	116

List of Tables (Cont...)

Table No.	Title	Page	No.
Table (12):	Correlation of Vit D3, anthropometric clinical measures in patients with ty diabetes mellitus.	rpe 1	118
Table (13):	Correlation of Vit D3 level with labora and radiological measures in patient type 1 diabetes mellitus	with	119
Table (14):	Correlation of Vit D3 level anthropometric and clinical measure patients with severe hemophilia A	es of	121
Table (15):	Correlation of Vit D3 level with labora and radiological measures of patients severe hemophilia A.	with	122
Table (16):	Correlation of Vit D3 level with deformity, family history and treats strategies in patients with sendemorphilia A.	ment evere	125
Table (17):	Correlation of DEXA z-score anthropometric measures of control gr	with	
Table (18):	Correlation of DEXA z-score laboratory and radiological measure the control group.	es of	127
Table (19):	Correlation of DEXA z-score anthropometric measures of patients type 1 diabetes mellitus	with	128
Table (20):	Correlation of DEXA z-score laboratory measures of patients with 1 diabetes mellitus	type	129
Table (21):	Correlation of DEXA z-score anthropometric and clinical measure patients with severe hemophilia A.		130

List of Tables (Cont...)

Table No.	Title	Page No.
Table (22):	Correlation of DEXA z-score laboratory measures in patients	
Table (23):	severe hemophilia A. Correlation of DEXA z-score with cl data and treatment in patients severe hemophilia A.	inical with
Table (24):	Correlation of J-score with Vit DS DEXA z-score in patients with shemophilia A.	severe
Table (25):	Comparison of laboratory and radiol measures in group of patients with t diabetes mellitus, patients with s hemophilia A and group of controls	type 1 severe

List of Figures

Fig. No.	Title	Page No	0.
Figure (1):	Vitamin D synthesis		.18
Figure (2):	Scanner used to measure bone der	nsity	
	with DEXA scan		.26
Figure (3):	Correct positioning and analysis of L		
T	spine and proximal femur		
Figure (4):	DEXA images showing regions of inte		
Figure (5):	Universal pain assessment tool		
Figure (6):	Hemophilia joint health score (HJHS)		
Figure (7):	TCNS		.96
Figure (8):	Percentage of pain and deformity		
T' (0)	patients with severe hemophilia A		LU4
Figure (9):	Comparison of level of Vit D3, calcium		
	phosphorus in patients with T1DM		
E' (10)	control group.		LTT
Figure (10):	Comparison of DEXA z-score in patr		110
Figure (11).	with T1DM and control group		LIZ
Figure (11):	Comparison of level of Vit D3 in pati		
	with severe hemophilia A and congroup		111
Figure (19).	Comparison of DEXA z-score in pati		L 14
Figure (12):	with severe hemophilia A and con		
	group		115
Figure (13):	Correlation of DEXA z-score with		LIO
rigure (10).	mass index in patients with se	•	
	hemophilia A		132
Figure (14):	Correlation of DEXA z-score with		102
rigure (11).	mass index z-score in patients with se	v	
	hemophilia A.		132
Figure (15):	Correlation of DEXA z-score with		
118010 (10)	score in patients with severe hemop		
	A		133
Figure (16):	Correlation of DEXA z-score		
-8 (2-0)•	treatment strategies in patients		
	severe hemophilia A.		135

List of Tables (Cont...)

Table No.	Title	Page No.
Figure (17):	Correlation of J-score with Vit D	03 in
	patients with severe hemophilia A	137
Figure (18):	Correlation of J-score with DEXA z-	score
	in patients with severe hemophilia A.	137
Figure (19):	Comparison of serum vitamin D lev	el in
	group of patients with type 1 dia	betes
	mellitus, patients with severe hemoj	philia
	A and group of controls.	140
Figure (20):	Comparison of serum calcium lev	el in
	group of patients with type 1 dia	betes
	mellitus, patients with severe hemoj	philia
	A and group of controls.	140
Figure (21):	Comparison of DEXA z-score in pat	tients
	with type 1 diabetes mellitus, pat	tients
	with severe hemophilia A and grow	up of
	controls.	141

List of Abbreviations

Abb.	Full term
%CV	Coefficients of variation
2-h PG	The 2-h plasma glucose
ADA	American Diabetes Association
ALP	Alkaline phosphatase
Alt	Alanine aminotransaminase
ANOVA	A one way analysis of variance
aPPT	Activated partial thromboplastin time
ASCVD	Atherosclerotic Cardiovascular Disease
Ast	Aspartate aminotransaminase
BMC	Bone mineral content
BMD	Bone mineral density
BMI	Body mass index
Ca	Calcium
CaBp	Calcium binding protein
Creat	Creatinine
CRS	Congenital rubella syndrome
CSII	Continuous subcutaneous insulin infusion
DCCT	Diabetes Control and Complications Trial
DCs	Dentritic cells
DEXA	Dual Energy X-Ray Absorptiometry
DKA	Diabetic Ketoacidosis
DM	Diabetes mellitus
DSMES	Diabetes self management education and support
FFM	Fat-free mass
FFP	Fresh frozen plasma
FGF23	Fibroblast growth factor 23
FH	Family history

List of Abbreviations (Cont.)

Abb.	Full term
FPG	. Fasting plasma glucose
GAD	. Glutamic acid decarboxylase
GIT	. Gastrointestinal tract
GWA	. Genome-wide association
Hb	. Hemoglobin
HbA1C	. Glycosylated hemoglobin
Hct	. Hematocrit
HJHS	. Hemophilia Joint Health score
HLA	. Human leukocyte antigen
Ht	. Height
ICA512	. Tyrosine phosphatase-like protein
ICOS	. Inducible costimulatory molecule
IL	. Interleukin
INF	. Interferon
ISCD	. International Society of Clinical Densitometry
ISPAD	International Society for Pediatric and
TITT	Adolescent Diabetes
	. Immune tolerance induction
	. Immune tolerance therapy
J-score	
	Lean Body Mass
	. Major histocompatibility complex
	Medical nutrition therapy
	. Maturity onset diabetes of young
NGSP	National Glycohemoglobin Standardization Program
NS	. Normal saline
OGTT	. Oral glucose tolerance test
P	. Phosphorus

List of Abbreviations (Cont.)

Abb.	Full term
Plts	. Platelets
PT	. Prothrombin time
PTH	. Parathormone
RAAS	. Renin Angiotensin Aldosterone System
RAS	. Renin-angiotensin system
Rbcs	. Red blood cells
RIN	. Rat insulinoma
ROI	. The region of interest
SD	. Standard deviations
SDS	. Standard deviation score
T1DM	. Type 1 diabetes mellitus
Tc	. Total cholesterol
TCNS	. Toronto Clinical Neuropathy Score
TG	. Triglyceride
TGF	. Transforming growth factor
Th	. T helper cell
TNF	. Tumor necrotic factor
Tregs	. Regulatory T cells
USA	. United State of America
VD	. Vitamin D
VDD	. Vitamin Ddeficiency
VDR	. Vitamin D receptor
Wbcs	. White blood cells
WHO	. World Health Organization
Wt	. Weight
ZnT8	. Zinc T8 transporter

ABSTRACT

Background: Vitamin D (Vit D) deficiency (<20ng/ml) or insufficiency (20-30 ng/ml) are common in pediatric patients with severe hemophilia A and patients with type 1 diabetes mellitus (T1DM). It affects bone mineral density (BMD) which is assessed by Dual Energy X-ray Absorptiometry (DEXA) scan (osteoporosis ≤-2.5 z-score and osteopenia -1 ≥ z-score > -2.5).

The aim of this study was to measure 25-hydroxyvitamin D level in patients with severe hemophilia A and those with T1DM and correlate it to their DEXA scan score, glycemic control and the presence of microvascular complications in T1DM and annual bleeding rate in severe hemophilia A.

Methods: This 1-year cross-sectional study was conducted on 50 patients with T1DM and 50 patients with severe hemophilia A who were compared to 50, age and sex matched, healthy controls. They were recruited from Pediatric diabetes clinic and hematology clinic, Ain Shams University. All participants were subjected to full history, examination, laboratory investigations included hemogram, serum 25(OH)Vit D, calcium, phosphorus, alkaline phosphatase, glycosylated hemoglobin (HbA1c), lipid profile, ALT, urea, creatinine; urine analysis for microalbuminuria and DEXA scan.

Results: The mean patients' age was 13.56 years (9-16). Vit D deficiency and insufficiency were demonstrated in 56% and 22% respectively in T1DM, and 97% deficiency on severe hemophilia A. Mean Vit D in our diabetics and hemophilics was correlated with their DEXA scan score. An inverse correlation was found between mean Vit D and HbA1C, diabetes duration, and presence of microvascular complications in patients with T1DM and joint score in patients with severe hemophilia.

Conclusion: Vit D deficiency (<30 ng/ml) was related to longer diabetes duration, elevated HbA1C and presence of microvascular complications in patients with T1DM and annual bleeding rate and joint score in patients with severe hemophilia A. Hence, Vit D supplementation might help in control of diabetes and possible delay or prevention of its microvascular complications in diabetics and improve mobilization and quality of life in hemophilics.

Keywords: Dual Energy X-ray Absorptiometry; Vitamin D; type 1 diabetes mellitus

Introduction

Steoporosis is a disorder characterized by decreased bone mass and microarchitectural deterioration, resulting in loss of bone strength and fragility fractures. The fundamental pathogenetic mechanisms includes: failure to achieve optimal strength during growth, excessive bone resorption resulting in loss of bone mass, and failure to replace lost bone due to defects in bone formation (Sözen et al., 2017).

Hemophilia is an inherited bleeding disorder characterized by the absence of one of the coagulation factors including factor VIII in hemophilia A and factor IX in hemophilia B. The type of inheritance is X-linked and recessive. However, occasionally, there are some spontaneous mutations (*Rodriguez*, 2010). There are three grades of hemophilia according to the percentage of coagulation factor in the patient's blood: severe (<1%), moderate (1% to 5%), and mild (>5%) (*Rodriguez*, 2010).

Patients with hemophilia may be at risk for developing reduced bone mineral density (BMD) for a number of reasons such as recurrent hemoarthrosis, immobilization (Abdelrazik et al., 2007), lack of adequate exercice, and low vitamin D (VD) levels (Albayrak and Albayrak, 2015).

These factors may also affect the peak bone mineral density (BMD). Children achieve peak bone density at the end of sexual and skeletal development (*Wren et al.*, 2014).

Low bone mass in childhood may be reflected in low BMD in adolescence and adult life. Low peak bone density facilitates the development of osteoporosis in later life. Achieving a normal bone mass in childhood is therefore a positive factor for preventing adult osteoporosis. To avoid osteoporosis and its complications such as pathologic fractures, preventive measures need to be taken in childhood as body growth takes place (Wallny et al., 2007). Some useful measures are early assessment of bone mass, ensuring normal vitamin D (Vit D) status, and preventing and early correction of joint mobility limitations. Of these, Vit D supplementation is easy and cheap to implement, provided the vitamin D deficiency is known (Alioglu et al., 2012 and Barnes et al., 2004).

Hematologists dealing with hemophilia may overlook the possibility of vitamin D deficiency (VDD) in hemophilic patients by focusing on matters such as bleeding and factor use. In many hospitals, Vit D measurement is not available for routine use in patients. If physicians cannot measure vitamin D levels during routine patient visits, they will not be aware of the extent and depth of Vit D deficiencies. For this reason, we do