Treatment Strategies of Complex Intracranial Aneurysm

Thesis Submitted For M.D Degree

By

Nadim Nabil Mohammad Abd Al Rahman

Master Degree Neurosurgery

Under Supervision of

Prof. Dr. Mohammad Alaa Fakhr

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Prof. Dr. Ashraf Gamal Al Abyad

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Prof. Dr. Mohammad Alaa Al Din Habib

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Prof. Dr. Tamer Hassan Shehata

Professor of Neurosurgery Faculty of Medicine Alexandria University

Assist. Prof. Dr. Ahmad El Sayed Desouky El Ayouty

Assistant Professor of Neurosurgery Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2018

CONTENTS

Title		Page
List o	of Contents	·i
List o	of Tables	.ii
List o	of Figures	iii
List o	of Illustrated Cases	.vii
List o	of Abbreviations	.ix
I.	Introduction	.1
II.	Review of Literature	.2
	1. Definition	.4
	3. Clinical Presentation	.34
III.	Aim of the work	. 69
IV.	Patients	.70
V.	Methods	.72
VI.	Results	.89
VII.	Illustrated cases	.121
VIII.	. Discussion	.150
IX.	Summary	.171
X.	Conclusion	.174
XI.	References	.176
	Arabic summary	

LIST OF TABLES

Table		Page
(1)	Hunt and Hess grading score for SAH.	33
(2)	World Federation of Neurological Surgeons scoring system WFNS.	33
(3)	Modified Rankin's scale mRS.	88
(4)	Glasgow outcome score GOS.	88
(5)	The initial presenting symptoms of all the patients in this study.	94
(6)	The different sites of the intracranial aneurysms.	98
(7)	The different endovascular procedures that were included in this study.	109
(8)	Follow-up for all patients for every treatment option and their progress by DSA and by modified Rankin's score mRS. (after 6 months)	112
(9)	The different surgical options compared to mRS.	113
(10)	The different endovascular options compared to the mRS.	114
(11)	The different treatment options compared to mRS.	116
(12)	Master Table	117

LIST OF FIGURES

Figure		Page
(1)	Internal carotid artery segments by angiogram	5
(2)	A/P and lateral views of the anterior circulation by angiogram	7
(3)	A/P and lateral views of the posterior circulation by angiogram	9
(4)	Different aneurysm sites at the proximal carotid segment	11
(5)	Anatomy of the supraclinoid segment of the internal carotid artery ICA	13
(6)	Aneurysm projection in both the posterior communicating artery (P-com) and anterior choroidal artery (A-chrd)	13
(7)	Aneurysm shape at the ICA bifurcation according to the size	15
(8)	Different aneurysm dome projection at the ICA bifurcation	15
(9)	Showing proximal MCA aneurysms	17
(10)	Configuration of M ₁ bifurcation aneurysm	18
(11)	Different anatomical variations of the A-com aneurysms and its relation to the A_1 - A_2 junction	19
(12)	A schematic drawing showing the 2 anterior communicating artery (A-com) aneurysm groups	19
(13)	Common orientation of PICA aneurysm originating from left vertebral artery	21
(14)	Common bony association with the vertebral artery VA-PICA segment	22
(15)	Fenestration of the vertebro-basilar system	23
(16)	Fenestrated Vertebro-basilar junction aneurysm	23

Figure		Page
	arising from proximal carina of fenestration	
(17)	Anatomical configuration of the Basilar artery	24
(18)	Anatomical configuration of the AICA aneurysm	25
(19)	The favorable aneurysms configuration	28
(20)	The unfavorable aneurysms configuration	29
(21)	The ugly configuration of very large and giant aneurysms	30
(22)	The different basic fluoroscopic views taken during a conventional angiogram	39
(23)	Computational flow dynamics models CFD	41
(24)	Clip application technique and hand adjustment during clipping	47
(25)	Basic clipping techniques of simple aneurysms	48
(26)	Tandem clipping techniques	49
(27)	Tandem angled fenestrated clipping	50
(28)	Fenestration tubes clipping techniques for more complex aneurysm	51
(29)	Schematic illustrations of various repair methods for arterial tearing during aneurysm surgery.	52
(30)	Balloon-assisted aneurysm coiling	56
(31)	Balloon-assisted Onyx aneurysm embolization	58
(32)	Double Y-stent shaped coiling procedure for basilar tip giant aneurysm	60
(33)	Waffle-cone stenting technique for coiling of complex aneurysms	61
(34)	Pipeline Embolization Device (PED)	65
(35)	Angiography Suite with mono-planer C-arm SIEMENS (Artis Zee Ceiling)	78
(36)	Framing and packing coils (Left to right).	81

Figure (37)	Neuroform Boston Scientific self-expanding	Pag 82
(31)	micro-stent	04
(38)	Liquid embolic material n-butyl-2-cyanoacrylate (nBCA) also known commercially as Histoacryl supplied with lipidol oil used to radiographically opacify this liquid	84
(39)	Pie Chart representing the sex distribution in this study	89
(40)	Bar Chart for the age distribution in the study	90
(41)	Bar Chart for the distribution of patient's occupation	90
(42)	A pie chart showing the initial presentation of the total number of patients where 28 (35%) of patients had symptoms of ruptured aneurysms and 52 (65%) were non-ruptured at the time of examination.	91
(43)	Pie Chart for the distribution of the Hunt and Hess scoring system H&H n=28	92
(44)	Pie Chart for the distribution of patients according the WFNS score n=28	93
(45)	Bar Chart showing the initial clinical presentation of both ruptured and unruptured aneurysms in the study	95
(46)	Pie Chart showing the initial CT findings in all patients	96
(47)	An example of different aneurysms seen on CT angiogram in this study	97
(48)	The distribution and frequency of aneurysms in different intracranial vessels	98
(49)	Pie Chart for the aneurysm morphological features	99

Figure		Page
(50)	Pie chart for the aneurysm size included in this study	100
(51)	Pie chart showing the neck width in this study	100
(52)	ICA segments classification according to the intervention done	102
(53)	Bar chart of the aneurysms in the ICA	102
(54)	Classification of vertebro-basilar segments according to the intervention done	104
(55)	Bar chart of the aneurysms in the Vertebro- basilar system	104
(56)	Pie chart showing the laterality of the aneurysms	105
(57)	Pie chart showing the balloon occlusion test BOT results	106
(58)	Bar chart showing the surgical options done in this study n=22	107
(59)	Bar chart showing all the endovascular options performed in this study	109
(60)	Pie Chart showing GOS follow-up of the patients (after 6 months)	110
(61)	Pie Chart showing follow-up of all patients by mRS (after 6 months)	111
(62)	Bar chart showing surgical procedure follow-up compared to mRS	113
(63)	Bar chart for the different endovascular procedures compared to the mRS	115
(64)	Bar chart showing all the treatment options compared to mRS	116

LIST OF ILLUSTRATED CASES

Case		Page
(1)	A 25-year old male with a giant fusiform Basilar aneurysm treated by coil reconstruction and flow reversal technique.	123
(2)	A 45-year-old female with a giant distal Basilar artery aneurysm treated by stent reconstruction of basilar segment and direct coiling of the giant aneurysm.	125
(3)	A 63-years-old female with a giant right Ophthalmic aneurysm treated by clip reconstruction technique.	127
(4)	A 47-year-old female with a giant right Ophthalmic artery aneurysm treated by Aneurysmectomy and sac reconstruction by clips.	129
(5)	A 41-year old male with a left giant cavernous aneurysm tolerant to BOT treated by parent vessel occlusion by surgical ligature.	131
(6)	A 37-year-old male with a right cavernous wide neck aneurysm treated by flow diversion.	133
(7)	A 35-year-old male with multiple aneurysms: a left giant fusiform cavernous aneurysm treated by parent vessel sacrifice and a left STA-MCA bypass on follow-up angiogram, there was a left giant PCA treated by flow diversion start	125
(8)	treated by flow-diversion stent. A 31-year-old male with a right giant cavernous	135
` '	aneurysm tolerant to BOT treated by parent vessel sacrifice ICA and direct aneurysm coiling.	137
(9)	A 36-year-old male with a giant ruptured P-com aneurysm treated by direct coiling of the sac and on	139

follow-up showed coil impaction treated by recoiling of the aneurysm. (10) A 17-year-old male with a history of firearm injury in the brain causing a left giant cavernous carotid aneurysm tolerant to BOT treated by parent vessel	Case		Page
in the brain causing a left giant cavernous carotid			
occlusion by balloon. 141	(10)	in the brain causing a left giant cavernous carotid aneurysm tolerant to BOT treated by parent vessel	141
(11) A 23-year-old male with a giant left petrous carotid aneurysm tolerant to BOT treated by PVO with	(11)	A 23-year-old male with a giant left petrous carotid aneurysm tolerant to BOT treated by PVO with	143
(12) A 14-year-old male with spontaneous ICH caused by a micotic MCA giant aneurysm embolized by histoacryl. 145	(12)	by a micotic MCA giant aneurysm embolized by	145
(13) A 6y old child presented left giant cavernous aneurysm treated by direct coiling with PVO 147	(13)	•	147
(14) A 42y old female presented with right Giant MCA M1 aneurysm treated by multiple clip reconstruction 149	(14)	M1 aneurysm treated by multiple clip	149

LIST OF ABBREVIATIONS

3D : 3 dimensions

ACA : Anterior cerebral artery.A-chrd : Anterior choroidal artery.

A-com : Anterior communicating artery.

AICA : Anterior-inferior cerebellar artery.

BA : Basilar artery.

BACE : Balloon-assisted coil embolization.

BOT : Balloon occlusion test.
CBC : Complete blood count.

CBF : Cerebral blood flow.

CFDA : Computational flow dynamics analysis.

CN IX : Glossopharyngeal nerve.

CN X : Vagus nerve.

CN XI : Spinal accessory nerve.

CN XII : Hypoglossal nerve.

CP angle : Cerebello-pontine angle.

CSF : Cerebrospinal fluid.

CT : Computed tomography.

CTA : CT angiography.

DIVA : Dual image video angiography.

DMSO : Dimethyl sulfoxide.DS : Digital subtraction.

DSA : Digital subtraction angiography.

ECA : External carotid artery.EC-IC : Extracranial—intracranial.FDD : Flow diverting devices.

GCS : Glasgow coma score.GOS : Glasgow outcome score.

H&H: Hunt and Hess.

ICA : Internal carotid artery.

ICG-VA : Indocyamine green video angiography.

INR : International normalization ratio.

IPS : Infra-PICA segment.MCA : Middle cerebral artery.

MRA : Magnetic resonance arteriography.

MRI : Magnetic resonance imaging.

mRS : Modified Rankin's scoring systems.

OA-PICA : Occipital artery- Posterior-inferior cerebellar artery.

Ophth. : Ophthalmic.

PCA : Posterior cerebral arteries.

P-com
Posterior communicating artery.
PED
Pipeline embolization device.
PGLA
Polyglycolic-polylactic acid.

PICA : Posterior-inferior cerebellar artery.

PS : PICA segment.
PT : Prothrombin time.

PVC: Polyvinyl chloride.

PVO: Parent vessel occlusion.

PVR : Parent vessel reconstruction.

SACE : Stent-assisted coil embolization.

SAH : Subarachnoid hemorrhage.SCA : Superior cerebellar artery.

SPS : Supra-PICA segment.

STA-MCA: Superficial temporal artery-Middle cerebral artery.

TIAs : Transient ischemic attacks.

VA : Vertebral artery.

VLA : Very large aneurysms.

WFNS: World Federation of Neurological Surgeons.

INTRODUCTION

Treatment of patients with complex aneurysms is amongst the most challenging for neurosurgeons and endovascular interventionalists. Proper clinical decision-making must balance the risks of conservative management against potential morbidity and mortality associated with any proposed intervention. Therefore, thorough knowledge of the natural clinical course of the lesion and an honest assessment of personal complication rates for the proposed intervention are of utmost importance. (1)

For complex aneurysms of the brain, effective interventions include surgery and endovascular technique. Some patients having complex aneurysm may require the use of more than one treatment modality. The term multimodality treatment has been used increasingly over the past two decades and refers to a variety of clinical scenarios and treatment algorithms of different complexities.⁽²⁾