سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Ain shams university

Faculty of science

Chemistry department

Physicochemical characterization and comparison of different starches isolated from some Egyptian food/feed crops of different cultivars

Submitted By

Marwa Mahmoud Abdel Aziz Mahrous

B.Sc. of science, Botany-chemistry Dept., faculty of science,

Ain shams University, 2008

A Thesis Submitted in Partial Fulfillment of

The Requirement for the Master Degree

In Chemistry

Supervised by

Prof. Dr. Mohamed Ahmed Prof. Dr. Nasser Shaaban A. Mekewi M. Khalil

Prof. of physical chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt. Chief Researcher, Regional Center for Food & Feed, Ministry of Agriculture, Giza, Egypt

Prof. Amr Atef El-Sayed

Professor at the textile research division, National Research center, Dokki, Giza, Egypt.

Physicochemical characterization and comparison of different starches isolated from some Egyptian food/feed crops of different cultivars

Thesis Submitted by

Marwa Mahmoud Abdel Aziz Mahrous

B.Sc. of science, Botany-chemistry Dept., faculty of science,Ain shams University, 2008

For the MSc Degree of science
In Chemistry

To

Chemistry Department
Faculty of Science
Ain Shams University

Ain shams university

Faculty of science

Chemistry department

Physicochemical characterization and comparison of different starches isolated from some Egyptian food/feed crops of different cultivars

Thesis Advisors	Thesis Approval
Prof. Dr. Mohamed Ahmed Mekewi Prof. of physical chemistry, faculty of science, Ain Shams University	•••••••••••••••••••••••••••••••••••••••
Prof. Dr. Nasser Shaaban A. M. Khalil Chief Researcher, Regional center for food/feed Ministry of Agriculture	
Prof. Amr Atef El-Sayed Professor at the textile research division, National Research center.	••••••

Head of Chemistry department

Prof. Dr. Ibrahim Hosiny Ali Badr

ABSTRACT

Different starches were isolated from different crop cultivars to study their physicochemical properties. The study based on selecting one cultivar of taro, namely Local variety, two cultivars of corn namely, Hi-Tech 2031 and Giza TWC 352 Y 352, two cultivars of wheat, namely Wheat Durum Beni Suef 1 and Bread Wheat Misr 1 as well as two cultivars of potato, namely Sponta and Lady Rosetta. The physicochemical studies involved, proximate analysis that included contents of ash, fat, moisture, protein and total carbohydrate. Other analytes like total organic matter (TOM), total organic carbon (TOC) were also quantified. Different elements in isolated starches were quantified using either Graphite Technique or inductively coupled plasma technique (ICP), where contents of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), nickel (Ni), selenium (Se), tin (Sn), cobalt (Co), antimony (Sb), molybdenum (Mo), copper (Cu), manganese (Mn) were quantified using graphite technique, while, contents of calcium (Ca), iron (Fe), zinc (Zn), potassium (K), sodium (Na), phosphorus (P) and magnesium (Mg) were quantified using ICP technique. The degree of hydrolysis of the isolated starches as well as the amylose-amylopectin profile, pH values, water binding capacity (WBC) solubility and swelling power at different temperatures were investigated. Spectroscopic studies, like Fourier transform infrared spectrometry (FT-IR) were achieved to study the characteristic bands of each cultivar, like OH bands, aliphatic CH stretching frequencies, beside the finger print region of each cultivar. The X-ray diffraction pattern (XRD) of the crystal structure of the isolated starches were studied to assure the crystallinity type of the starches (A or B types).

Keywords: Physicochemical properties, isolated starches, amylose, amylopectin, water binding capacity, solubility, swelling power, Ft-IR, XRD.

ACKNOWLEDGEMENT

First of all, I would like to thank **God**. You gave me the power to believe in my passion and pursue my dream. I could never have done this without the faith I have in you. Thanks.

I would like to express my gratitude to my college supervisor **Dr. Mohamed Mekewi** -Prof. Dr. of physical Chemistry, Chemistry Dept., Faculty of Science Ain Shams Uni.- for the useful comments and remarks; he was always keen to know what I was doing and how I was proceeding. Thanks for your patience, encouragement and being always enthusiastic by my side.

With a special gratitude to my supervisor **Dr.Nasser Shaaban**—Chief Researcher, Regional Center for Food & Feed, Ministry of Agriculture- for the learning process of this master thesis, for introducing me to the topic as well for all the support I needed on my way. Thanks for sharing your precious time during the process of analysis and helping me putting pieces together.

My gratitude also goes out to Regional center for food and feed (RCFF) for providing the place for the work, as well as my colleagues there for helping and supporting.

I am grateful to my mother who has provided me through moral and emotional support in my life and along my MSc journey.

With a special mention to my husband **Eng. Muhammad Abdel Rahman**, you are one of the main reasons that it was great. I am so thankful that I have you in my corner pushing me when I was ready to give up.

I am also grateful to my small family and friends who have supported me emotionally all the time.

And finally, last but by no means least, my great thanks to my father **Mahmoud Abdel Aziz** (God bless his soul), it was all for him.

Thanks all for your encouragement.

CONTENTS

TABLE OF CONTENTS

Conte	tents		Page No.
1.	INTRODUCTION	1	
2.	CHAPTER 1: REVIEW OF LITERATURE	3	}
	2.1.Starch structure.	3	
	2.2.Enzymatic degradation of starch	4	
	2.3. Physical properties of starch in water	6	
	2.4.Corn and sorghum grain structure	7	
	2.5.Potato starch and its utilization.	8	
	2.5.1. Substituted products of starch	8	
	2.5.2. Converted starches of potato	U	
	2.6.Rice starch and its general unique properties		
	2.7.Rye starch and its physical & chemical properties		
	2.7.1. Microscopic examination of rye starch		
	2.7.2. X-Ray diffraction pattern of rye starch		
	2.7.3. Behavior of gelatinization of rye starch		
	2.7.4. Retrogardation of rye starch	13	3
	2.7.5. Amylose-Lipid complex of rye starch	13	3
	2.7.6. Rheology of rye starch	14	4
	2.7.7. Falling number of rye starch	14	4
	2.8.Oat starch and its physical & chemical properties		5
	2.8.1. Microscopic examination of oat starch		5
	2.8.2. Chemical composition of oat starch		6
	2.8.3. X-Ray diffraction of oat starch		7
	2.9.Barley starch and its physicochemical properties		7
	2.9.1. Chemical composition of barley starch		7
	2.9.1.1.Carbohydrate component of barley		
	starch		7
	2.9.1.2.Non-carbohydrate component of ba	-	
	starch	*.	9
	starches	-	0
	2.10. Taro starch and its physicochemical properties		

2	2.11.	Physical m	nodification of tapioca (Cassava) starch	21
3. CHAP	TER	2: MAT	ERIALS AND METHODS	25
,	2115			
				25
			l reagents	25
•	3.3. S ta		n	25
			Isolation of taro starch	25
			Isolation of potato starch	27
,	2 4 Duo		Isolation of cereal (wheat & corn) starches	27
•	3.4.Pro		lysis	28
			Ash content.	28
			Fat content	29
			Protein content	29
			Total carbohydrate content	30 30
	3 5 Tot		matter content and total organic carbon	30
•		•		31
			tent of starches.	31
			Amylopectin contents	32
		•	e isolated starches	33
	•		capacity measurement.	34
	3.10.	_	olysable carbohydrates	34
	3.11.	•	ower and solubility	35
	3.12.		ransformer Infra-red (FT-IR) spectroscopy	36
	3.12.		fraction pattern	36
•	J.13.	71 Ruy um	nuction pattern	30
4. CHAP	TER	3: RESU	LTS AND DISCUSSION	37
4	4.1.Phy	ysicochemi	cal properties of isolated starches	37
		4.1.1.	Proximate analysis of isolated starches	37
		4.1.2.	Total organic matter (TOM) and total organic carbon	
			(TOC) of the isolated starches	39
		4.1.3.	Concentration of undesired elements in isolated	
			starches	40

4.1.4	. Concentration of some nutritive elements and other	
	elements in isolated starches	43
4.1.5	. Amylose & Amylopectin in isolated starches	49
4.1.6	. pH of isolated starches	51
4.1.7	. Hydrolysable effect of short time Alkali treatment on	
	the isolated starches	52
4.1.8	. Water binding capacity of isolated starches	53
	. Solubility of isolated starches and temperature effect	
	on it	54
4.1.1	0. Swelling power of the isolated starches and	
	temperature effect on it	55
4.1.1	1. Fourier Transform Infra-red (FT-IR) spectroscopy of	
	isolated starches	57
4.1.1	2. X-Ray diffraction pattern of isolated starches	86
	•	00
ENGLISH SUMM	ARY	94
		<i>,</i> ,
DEEDENCES		105
METRENCES		105
4 D 4 D 4 C C C 1 T 5 5 5 4		
'. ARABIC SUMMA	RY	120

LIST OF TABLES

Contents	Page No.
Table (1): Composition (%) of the isolated starches (proximate analysis).	37
Table (2): Total organic matter (TOM) and total organic carbon (TOC) content of the isolated	
starches	39
Table (3): Quantitative analysis of undesired elements (ppb)	40
Table (4): Concentration of some nutritive elements and other elements in the isolated starches.	43
	43
Table (5): Amylose and Amylopectin contents in the isolated starches	49
Table (6): pH of the isolated starches	52
Table (7): Effect of 0.9 M NaOH on the amount of hydrolysable carbohydrates.	53
Table (8): Water binding capacity of the isolated starches	54
Table (9): solubility (%) of the isolated starches	55
Table (10): Swelling power (g/g) of the isolated starches	55
Table (11): Infrared spectroscopy transmittance (%T) at different frequencies (Cm ⁻¹) of Taro (<i>Local</i>) starch	76
Table (12): Infrared spectroscopy transmittance (%T) at different frequencies (Cm ⁻¹) of Wheat (<i>Durum Beni Suef 1</i>) starch	77