Email:

Ahmedelgendi V · · · · · @gmail.com

Mobile:

الرقم القومي ٢٨٤٠٦٢٤١٦٠

Femoro popliteal bypass Vs angioplasty in TASC D lesion in endovascular ERA. Is it time to change the TASC recommendations?

Thesis submitted for partial fulfillment of M.D degree in vascular surgery

By

Ahmad Refaat ELGendi M.B.B.Ch., M.Sc of General Surgery

Under the Supervision of

Prof. Dr. Tarek Ahmed Abd El- Azim

Professor of vascular surgery
Faculty of medicine - Ain Shams University

Prof. Mostafa Soliman Mahmoud

Professor of vascular surgery Faculty of medicine - Ain Shams University

Dr. Mohamed Ismail Mohamed

Lecturere of vascular surgery Faculty of medicine - Ain Shams University

Faculty of Medicin Ain Shams University

7.19

First of all, thanks to "Allah" who enabled me to finish this piece of work.

I would like to extent this work to my father, my beloved mother for their daily support and prayer.

I would like to express my deep appreciation and thanks to the eminent **Prof:** Tarek Ahmed Abd EI-Azim Professor of general and vascular surgery, Faculty of Medicine, Ain Shams University, for his continuous support, valuable time and guidance throughout this work. It is a great honor and a chance of lifetime to be supervised by him. I would like also to express my deep thanks & appreciation to **Prof:** Mostafa Soliman Mahmoud, Professor of general and vascular surgery, Faculty of Medicine, Ain Shams University, for his kind help and assistance. The knowledgeable scientist for whom no words of praise are sufficient.

My deep thanks to **Dr. Mohamed Ismail Mohamed,** Lecturer of General and vascular Surgery, Faculty of Medicine, Ain Shams University for his aid and precious remarks.

Lastly, I would also like to express my warm feelings to all the staff members of Vascular Surgery department, Faculty of Medicine, Ain Shams University for their continuous encouragement.

Ahmed Refaat El- Gendi

List of Contents

Aim of study)
Review	V	۲
I.	Surgical Anatomy of the lower limb arterial systems	۲
II.	Arterial wall biology	١٣
III.	Atherosclerosis	١٧
IV.	Critical lower limb ischemia	۲ ٤
V.	Surgical intervention	٣٦
VI.	Endovascular intervention	01
Patient	s and methods	١.,
Result	3	117
Discus	Discussion	
Conclu	Conclusion	
Reference		1 2 4
Arabic Summary		١

List of Abbreviations

CFA Common femoral artery
SFA Superficial femoral artery
PFA Profunda femoris artery
ATA Anterior tibial artery
PTA Posterior tibial artery

 $\begin{array}{ll} \textbf{PA} & \text{Peroneal artery} \\ \textbf{SMC}_S & \text{Soomth muscle cells} \\ \textbf{EC}_S & \text{Endothelial cell} \end{array}$

ECM Extra celluar matrix
IEL Interal elastic lamina

PAD Peripheral arterial occlusive disease

ABI Ankle brachial index
LDL Low dinesty lipopioein
CLI Critical limb ischemia

TM Treadmill

AP Ankle pressure **TP** Toe pressure

PSV Peak systolic velocity
EDV End diastolic velocity

CTA Computed tomography angiography

CAD Coronary artery diseaes

CLTI Chronic limb threateninig ischemia

GSV Great saphenous vein

TASC Trans atlantic society consensus

C.B Cutting balloon ISR In stent restenosis

CTo Chronic total occlusion IVUS Intravascular ultrasound

EF Ejection fraction **FI** Foot infection

CIN Contrast induced nephropathy

List of Figures

Figure	Title	Page
No.		- ugc
Fig (1)	Major arteries of the lower limb	۲
Fig (Y)	Anatomical variants of the profunda femoris artery	٤
Fig (*)	Popliteal artery Variants	٦
Fig(\$)	The anterior tibial artery	٨
Fig (°)	The popliteal, posterior tibial and peroneal arteries	١.
Fig (٦)	The planter arteries and arch	١٢
Fig (V)	Layers of the arterial wall	١٤
Fig (^)	The external mechanical forces exerted on a femoropopliteal arterial segment	* * *
Fig (4)	TASC II Y Y Femoro popliteal segment	77
Fig (\cdot\cdot)	Diagrammatic representation of subintimal dissection	٧٦
Fig(\\)	Cutting balloon	٧٩
Fig (1 7)	SilverHawk® device	٨٢
Fig (۱۳)	Outback catheter	٨٦
Fig(\\\\\)	Pioneer catheter	٨٦
Fig(\o)	Blunt microdissection with Frontrunner device.	٨٨
Fig (۱٦)	Viabahn covered stent	90
Fig (\ \ \ \ \)	Wallgraft covered stent	90
Fig(\\\)	smoking in study population.	111
Fig (\ 4)	DM in study population	110
Fig (Y·)	HTN in study population.	١١٦
Fig (۲۱)	EF in study population	117
Fig (۲۲)	Long balloon angioplastyof total SFA occlusion throughcontralateral femoral approach	١٣١
Fig (۲۳)	Pre- procedure CTA	١٣٢
Fig (Y £)	Pre- procedure right foot ulcers	1 7 7
Fig (۲۰)	Post- procedure healing of ulcers	1 7 7

List of Tables

Table No.	Title	Page
Table (1)	Histological classification of atherosclerosis	* *
Table (7)	Clinical categories of limb ischemia	7 7
Table (*)	TASC II Y Y of femoropopliteal segment	77
Table (4)	Age in study population	117
Table (°)	Gender in study population	117
Table (٦)	Smoking in study population	117
Table (Y)	Comorbidities in study population	110
Table (^)	Presenting Complain in study population	117
Table (4)	ABI in study population	۱۱۸
Table (۱۰)	Number of distal runoff vessels in study population	119
Table (11	Technical success in study population	١٢.
a)		
Table (\ \ \ b)	Clinical success in study population	17.
Table (\ \ \ \ c)	Improvement of ABI in study population	١٢١
Table (\)\	Complications in study population	١٢٢
Table (۱۱ e)	Incidence of complications in study population	١٢٣
Table () Y	Relation of clinical outcome to number of distal	175
a)	runoff vessls in study population	
Table (\ \ \ \ \ b)	Relation of clinical outcome to number of distal runoff vessls in group (B)	175
Table (\ \ \ \ \ c)	Relation of limb salvage to presenting complain in study population	170
Table (۱۳ a)	Mortality in study population	1 7 7

Table (۱۳	¹ry patency, ¹ry patency & limb salvage in study	١٢٨
b)	population	
Table (۱۳	ry patency at rd month in study population	١٢٨
c)		
Table (۱۳ d)	Yry patency at Yrd month in study population	1 7 9
Table (۱۳ e)	Limb Salvage at rrd month in study population	1 7 9
Table (۱ ° f)	`ry patency at ¹th month in study population	1 7 9
Table (۱ ۳	Yry patency at ¹th month in study population	17.
g)		
Table (۱۳	Limb Salvage at 7th month in study population	14.
h)		

Aim of the study

Aim of the study

Is to discuss whether patients with CLI due to TASC

D lesion will still best managed with femoropopliteal
bypass or can be managed by balloon angioplasty that much
decreases postoperative morbidities
especially with appearance of new advances in
endovascular techniques.

١

Review of Literature

I. Surgical Anatomy of the lower limb arterial systems

The artery which supplies the greater part of the lower extremity is the direct continuation of the external iliac (figure '). It runs as a single trunk from the inguinal ligament to the lower border of the popliteus, where it divides into two branches, the anterior and posterior tibial. The upper part of the main trunk is named the femoral, the lower part is popliteal (*Gray*, '' · · •).

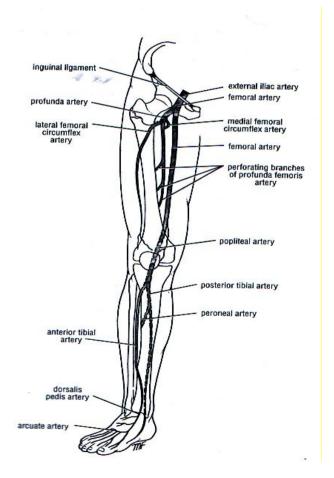


Fig. (1): Major arteries of the lower limb (Quoted from Richard, "...").

The common femoral artery enters the thigh by passing behind the inguinal ligament, here it lies midway between the anterior superior iliac spine and the symphysis pubis, it divided $^{\Upsilon}$ to $^{\circ}$ cm below the inguinal ligament into $^{\Upsilon}$ major branches; the profunda femoris artery and the superficial femoral artery which descends almost vertically toward the adductor tubercle of the femur and ends at the opening of the adductor magnus muscle by entering popliteal space as supragenicular popliteal artery (*Richard et al.* $^{\Upsilon} \cdots ^{\Upsilon}$).

The branches of the common femoral artery are superficial epigastric, deep external, superficial iliac circumflex, muscular, superficial external pudendal and highest genicular arteries (*Gray*, $\gamma \cdot \cdot \cdot \circ$).

The profunda femoris artery is a large vessel arising from the lateral and back part of the femoral artery, from ^Y to ^o cm below the inguinal ligament. At first it lies lateral to the femoral artery; it then runs behind it and the femoral vein to the medial side of the femur and passing downward behind the adductor longus, ends at the lower third of the thigh in a small branch, which pierces the adductor magnus, and is distributed on the back of the thigh to the hamstring muscles. The terminal part of the profunda is sometimes named the fourth perforating artery. The