

"The effect of whole barley and cinnamon on blood glucose level & lipid profile with type 2 diabetes"

By

Mohamed Esssam Eldeen Mohamed Ayad

B.A . nutrition and food science 1995

Master degree in clinical nutrition 2012

Senior dietitian in new Kaser al Aini hospital – Faculty of Medicine Cairo University

A thesis submitted of requirements of Ph.D. Degree in Home Economics Dep. Nutrition and Food Science / Faculty of Specific Education / Ain Shams University

Supervisors

Prof. Ibrahim Nagib El Ebrashy

Prof.Dr. of Internal Medicine Faculty of Medicine, Cairo Univ.

Prof.Walaa Ibrahim Mohamed Aniess

Prof.Dr. Of nutrition & food Sciences Home Economics Dept., Faculty of specific education, Ain- Shams Univ.

Prof. Heba Allah Mostafa El Dein Kamal

Prof.Dr. of Internal Medicine Faculty of Medicine, Cairo Univ.

Prof.Zenab Mostafa Mosa

Prof.Dr. Of nutrition & food Science Home Economics Dept., Faculty of specific education, Ain- Shams Univ.

2019

Abstract

The study aimed at the effect of the intake of barley and cinnamon on the level of diabetes in type 2 patients and blood lipids and divided the number of 64 patients with no complications of diabetes and non-dieting diet or any sports activity, on 4 groups, including a group of women and others dealing with barley and a group dealing with first And the last one deals with barley and cinnamon together.

A nutritional history was done by taking an average of 24-hour retrieval in the first trial, 6 weeks later and 12 weeks later.

Some laboratory tests, such as total blood lipids and blood glucose levels, were measured from the first trial, 6 weeks later and 12 weeks later.

The results showed an improvement in blood sugar level as well as fat respectively on the Barley group and the last Cinnamon group which showed the most results from the descent of sugar and blood lipids.

All of this is illustrated by the results through tables and graphs.

ACKNOWLEDGMENT

First of all, there are no words can express my gratifying thanks to my GOD ALLAH for strengthening and blessing me in all aspects of my life.

I wish to express my deepest thanks, sincere gratitude and appreciation to **prof.**, **Dr. Ibrahim Nagib El Ebrashy** Prof., Of Internal Medicine & Diabetes Faculty of Medicine, Cairo University, for giving me opportunity to work under his supervision, for continuous help during every step of this work, indispensable advises, suggestion guidance, valuable comments and supporting me to achieve this work.

I would like also to convey my profoundly gratitude and appreciation to **Prof.**, **Dr. Heba Allah Mostafa Kamal El Dein** Prof. Of Internal Medicine & Diabetes Faculty of Medicine, Cairo University, for giving me the opportunity to work under her supervision, for her kindness valuable suggestions, continuous help during every step of this work, valuable comments, adding her great experience and encouraging me to achieve this work.

Also, I wish to express my deepest thanks, to **Dr.Walaa Ibrahim Mohamed Aniess** Prof. Of nutrition & food Sciences Home Economics Dept., Faculty of specific education, Ain-Shams University, for his kindness, adding his great experience and great help in every step of this work.

Also, My sincerest thanks and gratitude to **Dr. Zeinab Mostafa Mousa.** Prof., Of nutrition & food Sciences Home Economics Dept., Faculty of specific education, Ain-Shams University for her supervision, guidance and indispensable help throughout the work.

I wish to express my grateful to my lovely family specially my mother and my sisters for their love, supporting and encouraging me in achieving this work.

Finally, I would like to express my thanks to all those who helped me in any way in order to finish up this work.

Contents

	Р	age
ABSTRACT	2	uge
ACKNOWLEDGEMENT.	3	
CONTENTS.	4	
LIST OF TABLES.	7	
LIST OF FIGURES.	9	
LIST OF PHOTOS.	11	
LIST OF ABBREVIATIONS	12	
1. INTRODUCTION	15	
2. AIM OF WORK		
2. THIN OF WORK	17	
3. REVIEW OF LITERATURE	18	
3.1. Diabetes mellitus	18	
3.2. Classification of Diabetes Mellitus	18	
3.3. Risk Factors for Type 2 Diabetes Mellitus Epidemic	21	
3.4. Complications and Comorbidities of Type 2 Diabetes Mellitus	27	
3.4.1. Microvascular Complications	27	
3.4.2. Macrovascular Complications	29	
3.4.3. Miscellaneous Complications	31	
3.5. Insulin resistance.	33	
3.6. Diagnosis of diabetes mellitus.	34	
3.7. Nutritional Management of Type 2 Diabetes	36	
3.8. Cinnamon (Cinnamomum zeylanicum)	37	
3.8.1. The major bioactive components of cinnamon	39	
3.8.2. Protective and therapeutic application of cinnamon	41	
3.8.2.1. Anti-hyperglycemia and anti-hyperlipidemic	41	
3.8.2.2. Antitumor and anticancer.	42	
3.8.2.3. Enhancement of digestive system	43	
3.8.2.4. Antioxidant activity.	43	
3.8.2.5. Antihypertensive	43	
3.8.2.6. Other medical uses	44	
3.8.2.6. Other medical uses	44	
3.9. Barley (Hordeum vulgare L.)	44	
3.9.1. The major bioactive components of barely	46	
significant and major orounds to components or outerf	10	
3.9.2. Protective and therapeutic application of barley	48	
3.9.2.1. Diabetes and obesity	48	
3.9.2.2. Anti-cancer.		
3.9.2.3. Antihyperlipidemic :		
3.9.2.4. Hepatoprotective effect		
3.9.2.5. Antioxidants activity		
4. SUBJECTS AND METHODS 52		
4.1. Materials.	52	
4.2. Subject.	52	
4.3. Methods	52	

4.3.1. Preparation of Talbina	52	
4.3.2. Design of work	53	
4.3.3. Assessment of nutrient intake from food consumption data	53	
4.3.4. Patients characteristics and laboratory investigation	53	
4.3.5. Laboratory investigation.	54	
4.4. Statistical analysis.	54	
5. RESULTS AND DISCUSSION	56	
5.1. Nutritional status	56	
5.1.1. Mean and standard deviation of nutrients intake of diabetic subjects compared with dietary reference intake (DRI) at 0 week	56	
5.1.1.1. Mean and standard deviation of water, energy, protein, total fat, carbohydrate and	50	
total fiber at 0 week	56	
5.1.1.2. Mean and standard deviation of calcium, iron, magnesium, phosphorus, potassium,		
sodium, zinc, copper, manganese and selenium at 0 week	57	
5.1.1.3. Mean and standard deviation of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and D) at 0 week	59	
5.1.1.4. Mean and standard deviation of essential amino acids for diabetic subjects at 0 week	61	
5.1.2. Mean and standard deviation of nutrients intake in diabetic subjects compared with dietary reference intake (DRI) at 6 weeks	63	
5.1.2.1. Mean and standard deviation of water, energy, protein, total fat, carbohydrate and total fiber at 6 week	63	
5.1.2.2. Mean and standard deviation of calcium, iron, magnesium, phosphorus, potassium,		
sodium, zinc, copper, manganese and selenium at 6 weeks 5.1.2.3. Mean and standard deviation of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and	65	
D) at 6 weeks	66	
5.1.2.4. Mean and standard deviation of essential amino acids for diabetic subjects at 6 weeks	68	
5.1.3. Mean and standard deviation of nutrients intake in diabetic subjects compared with dietary reference intake (DRI) at 12 week	70	
5.1.3.1. Mean and standard deviation of water, energy, protein, total fat, carbohydrate and total fiber at 12 week	70	
5.1.3.2. Mean and standard deviation of calcium, iron, magnesium, phosphorus, potassium, sodium, zinc, copper, manganese and selenium at 12 week	72	
5.1.3.3. Mean and standard deviation of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and D) at 12 week	73	
5.1.3.4. Mean and standard deviation of essential amino acids for diabetic subjects at 12 week	75	
5.2. Laboratory investigation.	77	
5.2.1. Some anthropometric measurement of the diabetic subjects	77	
5.2.2. Effect of supplementation with barley talbina, cinnamon and their combination on serum glucose levels of diabetic subjects	79	

5.2.3. Effect of supplementation with barley talbina, cinnamon and their combination on HbA1c, HOMA-IR index and insulin levels in diabetic subjects	81	
	01	
5.2.4. Effect of supplementation with barley talbina, cinnamon and their combination on lipid profile in diabetic subjects	84	
5.2.5. Association between HOMA-IR index and different variables of metabolic syndrome in diabetic subjects.	88	
6. CONCLUSION.	95	
7. RECOMMENDATION	96	
5. SUMMARY	97	
7. REFERENCES	100	
8. ARABIC SUMMARY	125	
9. Arabic abstract	129	

List of Tables

		Page
(A)	General phenolic compounds of cinnamon bark and effects as reported in the literatures	31
(B)	General compounds of barely and effects as reported in the literatures	40
(1)	Mean and standard deviation of water, energy, protein, total fat, carbohydrate and fiber at 0 week	54
(2)	Mean and standard deviation of calcium, iron, magnesium, phosphorus, potassium, sodium, zinc, copper, manganese and selenium at 0 week	56
(3)	Mean and standard deviation of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and D) at 0 week	58
(4)	Mean and standard deviation of essential amino acids at 0 week	60
(5)	Mean and standard deviation of water, energy, protein, total fat, carbohydrate and fiber at 6 weeks.	63
(6)	Mean and standard deviation of calcium, iron, magnesium, phosphorus, potassium, sodium, zinc, copper, manganese and selenium at 6 weeks	65
(7)	Mean and standard deviation of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and D) at 6 weeks.	67
(8)	Mean and standard deviation of Amino acids at 6 weeks	69
(9)	Mean and standard deviation of water, energy, protein, total fat, carbohydrate	
	and fiber at 12 week.	72
(10)	Mean and standard deviation of calcium, iron, magnesium, phosphorus, potassium, sodium, zinc, copper, manganese and selenium at 12 week	74
(11)	Mean and standard deviation of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and D) at 12 week.	76
(12)	Mean and standard deviation of essential amino acids at 12 weeks	78
(13)	Anthropometric characteristics of the study subjects	81
(14)	Effect of supplementation with barley talbina, cinnamon and their combination	
	on serum glucose levels of diabetic subjects	83

(15)	Effect of supplementation with barley talbina, cinnamon and their combination	
	on serum glucose, HbA1c, HOMA-IR index and insulin levels in diabetic	87
	subjects	
(16)	Effect of supplementation with barley talbina, cinnamon and their combination	
	on lipid profile levels of diabetic subjects	93
(17)	Pearson correlation coefficient (r value) between HOMA-IR index and different	
	variables of metabolic syndrome in diabetic subjects	97

List of Figures

		Page
(A)	The complex pathophysiology of type 2 diabetes	45
(B)	The difference between insulin cells producing and when destroyed	49
(C)	The complex pathophysiology of diabetic retinopathy	51
(D)	The complex pathophysiology of diabetic neuropathy	54
(E)	The complex pathophysiology of diabetic nephropathy	59
(1)	Dietary reference intakes of water, energy, protein, total fat, carbohydrate and fiber	
	at 0 week for patient groups.	55
(2)	Dietary reference intakes of calcium, iron, magnesium, phosphorus, potassium,	57
	sodium, zinc, copper, manganese and selenium at 0 week for patient groups	
(3)	Dietary reference intakes of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and	
	D) at 0 week for patient groups.	59
(4)	Dietary reference intakes of essential amino acids at 0 week for patient groups	61
(5)	Dietary reference intakes of water, energy, protein, total fat, carbohydrate and fiber	
	at 6 weeks for patient groups	64
(6)	Dietary reference intakes of calcium, iron, magnesium, phosphorus, potassium,	
	sodium, zinc, copper, manganese and selenium at 6 weeks for patient groups	66
(7)	Dietary reference intakes of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and D)	
	at 6 weeks for patient groups	68
(8)	Dietary reference intakes of essential amino acids at 6 weeks for patient groups	70
(9)	Dietary reference intakes of water, energy, protein, total fat, carbohydrate and fiber	
	at 12 week for patient groups.	73
(10)	Dietary reference intakes of calcium, iron, magnesium, phosphorus, potassium,	
	sodium, zinc, copper, manganese and selenium at 12 week for patient groups	75
(11)	Dietary reference intakes of vitamins (C, B1, B2, B3, B6, Folate, B12, A, E and	
	D) at 12 week for patient groups	77
(12)	Dietary reference intakes of essential amino acids at 12 week for patient groups	79
(13)	Effect of supplementation with barley talbina, cinnamon and their combination on	
	serum glucose levels of diabetic subjects	84

(14)	Effect of supplementation with barley talbina, cinnamon and their combination on	
	HbA1c levels of diabetic subjects.	88
(15)	Effect of supplementation with barley talbina, cinnamon and their combination on	
	HOMA-index of diabetic subjects.	88
(16)	Effect of supplementation with barley talbina, cinnamon and their combination on	
	serum insulin levels of diabetic subjects	89
(17)	Effect of supplementation with barley talbina, cinnamon and their combination	
	on lipid profile levels of diabetic subjects	94
(18:A-F)	The straight line plots of the regression analysis between HOMA-IR index and FBG	
	(A); HbA1C (B); Serum insulin (C); triglycerides (D); Total cholesterol (E); HDL-	101
	Cholesterol (F) and LDL-Cholesterol levels (G) in diabetic groups	

List of Photos

		Page
(1)	Cinnamon bark (Cinnamomum zeylanicum)	29
(2)	Barley (Hordeum Vulgare L.)	38

LIST OF ABBREVIATIONS

3-ОНВ	2 hydroxybutyrata
Ab+	3-hydroxybutyrate Antibody positive
ABCD	Association of British Clinical Diabetologists
	Action to Control Cardiovascular Risk in Diabetes
ACCORD	
ACE	angiotensin-converting enzyme
ADDITION	American Diabetes Association
ADDITION	Anglo-Danish-Dutch Study in General Practice of Intensive Treatment and
	Complication Prevention in Type 2 Diabetic Patients Identified by
ADVANCE	Screening Action in Diabetes and Vascular disease: preterAx and diamicroN mr
ADVANCE	Controlled Evaluation
AER	Albumin excretion rate
AGE	
AGREE	advanced glycation end-product Appraisal of Guidelines for Research and Evaluation
AGREE	Atherosclerosis Risk in Communities Study
AUC	area under curve
AUROC	
AusDiab	area under receiver operating characteristic
	Australian Diabetes, Obesity and Lifestyle
BDR	Background diabetic retinopathy
BFST	Behavioural family systems therapy
BMI	Body mass index
BMI-SDS	Body mass index – standard deviation score
BP	blood pressure
BSPED	British Society for Paediatric Endocrinology and Diabetes
CASCADE	Child and Adult Structured Competencies Approach to Diabetes Education
CBT CGMS	Cognitive behavioural therapy
	Continuous glucose monitoring system
CHD	coronary health disease Chronic heart failure
CHF CI	confidence interval
CNC	chronic kidney disease
CNS	central nervous system
CRP	C-reactive protein
CVD	Cambridge Risk Score
CVD	cardiovascular disease
DALY	disability-adjusted life-year Dishetes Audit and Passarah in Taysida Sastland
DARTS	Diabetes Audit and Research in Tayside Scotland
DBP	diastolic blood pressure
DCCT	Diabetes Control and Complications Trial
DECODE	Diabetic cardiomyopathy Diabetic Fridamiology Collaborative Analysis of Diagnostic Criteria in
DECODE	Diabetes Epidemiology: Collaborative Analysis of Diagnostic Criteria in
DED	Europe Diotomy on array density
DED	Dietary energy density
DDD	diabetes mellitus
DPP	Diabetes Prevention Program
DPS	Diabetes Prevention Study
DRI	dietary reference intake
EASD	European Association for the Study of Diabetes
ELSA	English Longitudinal Study of Ageing

EPIC	English Longitudinal Study of Ageing
ESRD	end stage renal disease
FBG	Fasting blood glucose
FINDRISC	The Finnish Diabetes Risk Score
FPG	Fasting Plasma Glucose
GADPH	glyceraldehyde's 3-phosphate dehydrogenize
GBF	germinated barley food stuff
GCT	glucose challenge test
GDM	Gestational diabetes mellitus
GI	GLYCEMIC INDEX
GL	GLYCEMIC LOAD
GLUT4	Type 4 Glucose Transporters
GP	general practitioner
GTT	glucose tolerance test
HbA1c	Glycated haemoglobin
HDL	high density lipoprotein
HOMA	homeostasis model analysis
HOMA-IR	homeostasis model assessment for insulin resistance
HR	hazard ratio
HTA	Health Technology Assessment
ICD	International Classifications of Diseases
ICER	incremental cost-effectiveness ratio
IDF	International Diabetes Federation
IFG	impaired fasting glucose
IGR	impaired glucose regulation
IGT	impaired glucose tolerance
IHD	ischaemic heart disease
IQR	interquartile range
IR	Insulin resistance
IRAS	Insulin Resistance Atherosclerosis Study
LDL	low density lipoprotein
LEAD	lower extremity arterial disease
LEADER	Leicester Ethnic Atherosclerosis and Diabetes Risk
MeSH	medical subject heading
MI	myocardial infarction
MRC	Medical Research Council
NAO	National Audit Office
NDH	non-diabetic hyperglycaemia
NGT	normal glucose tolerance
NHANES	National Health and Nutrition Examination Survey
NHS EED	NHS Economic Evaluation Database
NICE	National Institute for Health and Care Excellence
NNS	number needed to screen
NSC	National Screening Committee
OGTT	Oral Glucose Tolerance Test
OR	odds ratio
PCT	primary care trust
PG	plasma glucose
PTP1B	protein-tyrosine phosphatase 1B
PVD	peripheral vascular disease
QA	quality assurance
ζ,,	quarty assurance

QALY	quality-adjusted life-year
RBC	red blood cell
RBG	random blood glucose
RCT	randomised controlled trial
RDA	Reference dietary allowance
ROC	receiver operating characteristic
ROS	reactive oxygen species
RR	relative risk
SAGE	skin advanced glycation end-product
SBP	systolic blood pressure
ScHARR	School of Health and Related Research
SD	standard deviation
SHI	statutory health insurance
SIGT	Screening for Impaired Glucose Tolerance
SPHN	Scottish Public Health Network
SPSS	Statistical Package for the Social Sciences
STAR	Screening Those At Risk
T1DM	type 1 diabetes mellitus
T2DM	type 2 diabetes mellitus
TAC	Tacrolimus
TC	total cholesterol
TG	triglyceride
TNF-a	Tumor Necrosis Factor Alpha
UKPDS	UK Prospective Diabetes Study
VADT	Veterans Affairs Diabetes Trial
WHO	World Health Organization
YHPHO	York and Humber Public Health Observatory
	,

1. Introduction

Nutrition plays a pivotal role in life and in medicine all over the world. In particular, acute and chronic diseases such as diabetes mellitus in most organ systems have pronounced effects on food intake and metabolism with increased catabolism, which lead to nutrition-related conditions like obesity that associated with increased morbidity and eventually death. At the other end of the spectrum, diet is a major determinant of future health, promoting the absence or postponement of disorders like diabetes and related complications (GBD, 2015).

Type 2 diabetes mellitus (DM) is an endocrinological chronic metabolic disorder in which prevalence has been rising steadily worldwide (**Deepthi** *et al.*, **2017**). Diabetes mellitus resulting from an irregularity in insulin secretions and insulin actions or both. Absence or reduced insulin in turn leads to persistent abnormally high blood sugar and glucose intolerance (**Jahan** *et al.*, **2015**). It is estimated that, in the year 2017, 451 million (age 18–99 years) people had diabetes worldwide, and this is potentially it will affect more than 693 million by 2045. Also, it was estimated that almost half of all people (49.7%) living with diabetes are undiagnosed. Moreover, there was an estimated 374 million people with impaired glucose tolerance (**Cho** *et al.* **2018**). Diabetes is not a single disorder, it is a multisystemic disease that is primarily associated with the pancreas, but also affects the skeletal muscles, gastrointestinal tract, kidneys, and brain (**Cornell 2015**).

Type 2 diabetes mellitus is the most widely recognized endocrine issue in humans. Currently it is estimated more than 387 million people had type 2 diabetes worldwide, and this expected to increase to 592 million by 2035 (Gutiérrez-Rodelo et al., 2017). Recently, type 2 diabetes is rising rapidly in developing and developed countries; however, it is demonstrated to be ever-rising in the Arab world nations (Meo et al., 2017). The global prevalence of type 2 diabetes mellitus is more progressively and recorded as a threatening and most exigent attitude to the healthcare providers. In addition Type 2 diabetes accounts for at least 90% of all cases of diabetes (IDF, 2015). Thus, it must take in consider that even with the great developments in medical sciences and diabetes science, it is still an incurable life-long disease, which is swiftly growing among different age groups of men and women. It engages various physiological functions, organs and multiple systems resulting in extensive ranging and highly damaging complications (James et al., 2002), which associated with relatively specific long term microvascular complications affecting the eyes, kidneys and nerves, as well as an increased risk for cardiovascular disease (Punthakee et al., 2018).

Otherwise, managing and treating diabetes have become more costly due to high financial burden on the patients and the total healthcare system. Moreover, available treatment options in modern medicine have several adverse effects. Therefore, there is a need to develop safe and effective treatment modalities for diabetes. Many herbs and spices which we use them for the daily needs are claimed to have properties of lowering the blood sugar levels, because of these properties they are