

شبكة المعلومات الجامعية

بسم الله الرحمن الرحيم

-CoO: 6000

سامية محمد مصطفى

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

نبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني واليكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

The state of the s

سامية محمد مصطفى

شبكة اللعلومات الجامعية

سامية محمد مصطفى

شبكة اللعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Mechanical Power Engineering

Effects of Blade Design Parameters on The Performance of a HAWT

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Mechanical Power Engineering)

by

Zakaria Mostafa Abdo Salim Marouf

Bachelor of Science in Mechanical Engineering
(Mechatronics Engineering)

Supervised By

Prof. Dr. Mahmoud Abdel Rasheed Nosier
Prof. Dr. Mohamed Rafat Okelah
Prof. Dr. Ashraf Ghorab

Cairo - (2019)

FACULTY OF ENGINEERING

Mechanical Power

Effects of Blade Design Parameters on The Performance of a HAWT

by

Zakaria Mostafa Abdo Salim Marouf

Bachelor of Science in Mechanical Engineering
(Mechatronics Engineering)

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Ismail A. Tag	
Mechanical Power , Arab academy for Science Technology & Maritime Transport	
Prof. Dr. Kaddah Shaker Kaddah	
Mechanical Power , Ain Shams University	
Prof. Dr. Mahmoud Abdel Rasheed	
Mechanical Power , Ain Shams University	
Prof. Dr. Mohamed Rafat Okelah	
Mechanical Engineering, Future University in Egypt	

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

,	701zaria	Mostaf	a Ahda	Calim	Mara	f
4	Zakana	iviostai	a Abuo	Sanni	Maro	uı

	Sig	gnat	ure

Date:23 April 2019

Researcher Data

Name : Zakaria Mostafa Abdo Salim Marouf

Date of birth : 09/04/1991

Place of birth : El-Dakahlia, Egypt

Last academic degree : Bachelor of Science in Engineering

Field of specialization : Mechanical Engineering Department

University issued the degree : Future University in Egypt (FUE)

Date of issued degree : July 2014

Current job : Teaching Assistant, Mechanical Engineering

Department, Faculty of Engineering and Technology, Future University in Egypt

Thesis Summary

In view of the increasing concerns about wind energy exploitation as one of the promising alternatives of renewable energy systems, numerous efforts are directed to rotor blades design in order to achieve the best performance. Forces acting on rotor blades of horizontal axis wind turbine (HAWT), and hence the turbine power coefficient, are greatly affected by deviations in blade profile shape and surface roughness from design conditions. Both may change due to environmental impacts such as dust, sand, ice...etc. One of the methods proposed for restoring performance of blades suffering from such changes is to attach a winglet at the tip of the blades.

The present work examined the winglet effect on blade performance at different operating conditions. An experimental study on a model of HAWT was carried out at the project laboratory to investigate the winglet positive effect on power coefficient. Blades are tested in six modes namely; clean surface with and without winglet, rough surface with 1-mm and 3-mm height models and rough surface with 1-mm and 3-mm height models provided with winglet.

Primary variables were measured at different air speeds and blade angles of attack, and performance parameters were deduced. A remarkable improvement in power coefficient was generally obtained.

A winglet effect, WE, was investigated to show the effect of winglet on blade performance. It was shown that mounting winglets at the tips of the blades have positive and negative variations in power coefficient depending on operating conditions.

A restoration factor, RF, was introduced to indicate how much of the blade-power lost due to increased surface roughness could be restored when attaching a suitable winglet. Although RF varies greatly with operating conditions, with values ranging between zero% to 100%, its average positive effect was obvious. The favorable effect of the winglet extended to include improving the performance of blades even at the clean mode (designed). A power enhancement factor, PEF, was thus introduced and estimated. Calculated results showed an increase in power coefficient exceeding 20% at test conditions.

Key words:

HAWT, Blade Surface Roughness, Winglet, Power Coefficient, Restoration Factor.

Acknowledgment

And my success is not but through Allah. Upon him I have relied, and to Him I return. Thanks go first and final to **Allah** who gave me the patience to complete this work.

I would like to express my sincere appreciation and gratitude to my supervisors, **Prof. Dr. Mohamed Rafat Okelah**, **Prof. Dr. Mahmoud Abdel Rasheed** and **Prof. Dr. Ashraf Ghorab** who have been very helpful in providing guidance and support in my work.

Special thanks to **Faculty of Engineering and Technology, Future University in Egypt** for allowing me to use wind tunnel laboratory and other lab facilities for the experimental part of my research.

I'm also indebted to all my family members for their continuous encouragement and support throughout the work.

Table of Contents

Thesis Summary	I
Acknowledgment	II
Table of Contents	III
List of Figures	VI
List of Tables	X
List of Abbreviations	XI
List of Symbols	XII
Chapter 1: Introduction	1
1.1 Introduction	2
1.2 Wind Energy at a Glance	3
1.3 Progress of Wind Energy Utilization	3
1.4 Potential of Wind Power in Egypt	4
1.5 Classification of Wind Turbines	8
Chapter 2: Literature Review	12
2.1 Introduction	13
2.2 Roughness Simulation and Description	15
2.3 Winglet Effect on Performance	18
Chapter 3: Experimental Set-up	20
3.1 Wind Tunnel Test Rig	21
3.2 HAWT Test Model	22
3.2.1 Test Blade	22
3.2.1.1 Selected Blade Surface Roughness Model	23
3.2.1.2 Winglet Tip Configuration	24
3.2.2 The Rotor Hub	24
3.2.3 The Rotor Shaft	25
3.2.3 Bearing	25
3.3 Measurements	26
3.3.1 Wind Velocity Measurement	26

3.3.2 Rotational Speed Measurement	27
3.3.3 Torque Measurement	27
Chapter 4: Results and Discussion	28
4.1 Governing Equations	29
4.1.1 Actuator Disc Theory	29
4.1.1.1 The Power Coefficient:	29
4.1.1.2 The Thrust Coefficient	30
4.1.2 Tip Speed Ratio	30
4.1.3 Reynolds Number	31
4.2 Results and Discussion	32
4.2.1 Results Presentation	32
4.2.2 The Effect of Winglet on The Designed Rotor Blade	33
4.2.2.1 Operation at Low Reynolds Number, Re = 37348	34
4.2.2.2 Operation at High Reynolds Number, Re = 81797	37
4.2.2.3 Concluding Remark About the Effect of Winglet on Rotor	r Blade40
4.2.3 Effect of Rotor Blades Surface Roughness on HAWT Per	formance
	40
4.2.3.1 Experimental Results at Blade Angle of Attack $\alpha = 5^{\circ}$	41
4.2.3.2 Experimental Results at Blade Angle of Attack $\alpha = 7^{\circ}$	52
4.2.3.3 Experimental Results at Blade Angle of Attack $\alpha = 11^{\circ}$	62
5. Conclusions	72
6. Recommendation to Future Work	73
7. References	74
Appendices	76
A- Arduino Code Used for Programming Load Cell	77
B- Axial Blower Operating Characteristics	79
C- Wind Velocity Measurement	82
D- Rotational Speed Measurement	82
D-1 Contact Tachometer	82
	02

E- Error Analysis	84
E.1 Propagation of Uncertainty	84
E.2 Uncertainty in The Present Experiment Work	84
F- Airfoil Characteristics	90

List of Figures

Fig. 1. 1. Global Renewable Power Capacity from 2007 to 2017	2
Fig. 1. 2. Renewable Energy Share in Global Electricity Power Generation in	
2017	2
Fig. 1. 3. Global Capacity of Wind Energy from 2007 to 2017	3
Fig. 1. 4. Renewable Energy Project Sites in Egypt	4
Fig. 1. 5. Egypt Electricity Production by 2022	5
Fig. 1. 6. Wind Energy Contributes Sold Capacities in Egypt in 2017	6
Fig. 1. 7. The Wind Atlas of Egypt	7
Fig. 1. 8. Location of The Best Three Sites for Wind Farms Around Red Sea	8
Fig. 1. 9. Classifications of Wind Turbines	9
Fig. 2. 1. (a) Dirt Build-up on The Turbine Rotor Blade (b) Icing Accumulation	on
on The Rotor Blade	.13
Fig. 2. 2. Wind Turbine Blade Surface Roughness Caused by (a) Insect	
(b) Erosion	.14
Fig. 2. 3. Turbine Blade Deterioration Due to Erosion and Maintenance Effort	15
Fig. 2. 4. Icing Simulation (a) Actual Icing Accumulation on The Turbine Rot	tor
Blade (b) Experimental Simulation of Icing	.17
Fig. 3. 1. Schematic Drawing for Wind Tunnel Test Rig.	.21
Fig. 3. 2. Wind Tunnel Test Rig at FUE, Project Laboratory	.21
Fig. 3. 3. Test Blade (a) Selected Blade Airfoil (b) Span Length of Blade	.22
Fig. 3. 4. Test Blade with Simulated Roughness (a)Blade Surface Roughness	
Model (b) Zigzag Characteristics	.23
Fig. 3. 5. Winglet-Blade Assembly with Surface Roughness Appended	.24
Fig. 3. 6. The Designed, Hub.	.25
Fig. 3. 7. The Rotating Shaft	.25
Fig. 3. 8. Shaft-Bearings Assembly.	.26
Fig. 3. 9. Vane Anemometer Used for Measuring Wind Velocity	.26
Fig. 3. 10. Contact Tachometer.	
Fig. 3. 11. Set-up for Measuring Torque.	
Fig. 4. 1. Available Power from The Wind	
Fig. 4. 2. C_p vs. TSR for Designed Blade at $Re = 37348$, $\alpha = 5^{\circ}$.33
Fig. 4. 3. (a) C _p vs. TSR of Clean Blade with and without Winglet. (b) WE%	VS.
TSR for Clean Surfaces (Curves a&b) at $\alpha = 5^{\circ}$.34
Fig. 4. 4. (a) C _p vs. TSR of Clean Blade with and without Winglet. (b) WE%	
TSR for Clean Surfaces (Curves a&b) at $\alpha = 7^{\circ}$.35