Stand-Alone Open Disectomy versus Fixation in Management of Recurrent Lumbar Disc Prolapse

Systematic Review
Submitted for Partial Fulfillment of Master Degree
of Neurosurgery

By Karim Mohamed Mohamed Shafie MB.B.B.ch

Under Supervision of **Prof. Ismail Sabry**

Professor of Neurosurgery Surgery
Faculty of Medicine - Ain Shams University

Prof. Mohamed Kabil

Professor of Neurosurgery Faculty of Medicine - Ain Shams University

Dr. Hamdi Nabawy Mostafa

Lecturer of Neurosurgery Surgery
Faculty of Medicine
Misr University for Science and Technology University

Dr. Omar Farouk Ahmed

Lecturer of Neurosurgery Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

First, I would like to express my sincerest gratitude and gratefulness to **Allah** who continues to bless and fill me with hope, faith and patience that enable me to carry out all my daily work.

I am greatly honored to express my thanks and gratitude to Prof. Ismail Sabry, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for guidance, great help encouragement and his creative support throughout the whole work up of this thesis.

I would like to express thanks and gratitude to Prof.Mohamed Kabil, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his valuable help and advice for me to accomplish this work.

I am very much indebted to Dr. Hamdy Nabawy Mostafa, Lecturer of Neurosurgery, Faculty of Medicine, Misr University of Science and Technology and Dr. Omar Elfarok, for there kind supervision, valuable advices, constructive criticism and indispensable help throughout this work. Last but not least, I would like to thank my family for their great help and support and every person who helped me during this work especially my dear colleagues in Neurosurgery Department, Faculty of Medicine, Ain Shams University and Misr University of Sicence and Technology for their great help in this work.

Karim Mohamed Mohamed Elshafei

List of Contents

Title	Page No.
List of Tables	خطأ! الإشارة المرجعية غير معرّفة.
List of Figures	خطأ! الإشارة المرجعية غير معرّفة.
List of Abbreviations	خطأ! الإشارة المرجعية غير معرّفة.
Abstract	خطأ! الإشارة المرجعية غير معرّفة.
Introduction	1
Aim of the Work	5
Review of Literature	
Clinical Anatomy	6
 Pathophysiology of Lumbar Disc 1 	Disease37
Clinical Picture	53
 Investigations 	72
Differential Diagnosis	86
Treatment	95
Methodology	122
Results	132
Discussion	157
Conclusion	163
References	167
Arabic Summary	

List of Tables

Table No.	Title Page No).
m 11 /1).		
Table (1):	Symptoms and signs of patient with lumbar radiculopathy	57
Table (2):	MacNab outcome assessment of patient satisfaction	26
Table (3):	Summary of study characteristics	3
Table (4):	Summary of patient demographics13	35
Table (5):	Meta-analysis for estimated blood loss	35
Table (6):	Meta-analysis for dural tear	37
Table (7):	Meta-analysis for achieving good-to- excellent MacNab score	39
Table (8):	Meta-analysis for the hospital length of stay	‡ 1
Table (9):	Meta-analysis for JOA score14	13
Table (10):	Meta-analysis for ODI14	15
Table (11):	Meta-analysis for the operative time14	ŀ7
Table (12):	Meta-analysis for reoperation 14	19
Table (13):	Meta-analysis for VAS score of back pain 15	51
Table (14):	Meta-analysis for VAS score of lower limb pain	33
Table (15):	Summary of operative variables and surgical outcomes	56

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Lumbar Vertebrae, superior view	<i>-</i> 9
Figure (2):	Cauda equina and meninges at level	
Figure (3):	Facet joint synovial folds. A, P view. B, a coronal section sho facet joint synovial folds	osterior ows the
Figure (4):	Vertebral ligaments of the region	lumbar
Figure (5):	Lumbar intervertebral foramen	19
Figure (6):	The intervertebral disc	23
Figure (7):	Pathways of nutrient supply	in a
	normal intervertebral disc	24
Figure (8):	The axial pressure dissipated	by the
	disk is transmitted to the a	
	fibrosus and to the vertebral end	plates26
Figure (9):	Compression load in a nondegenerated disk	
Figure (10):	Compression load in a degenerat	
Figure (11):	Tensile and compressive stresses	
	disk during bending	
Figure (12):	Annulus fibers	
Figure (13):	Locations of shear strains in the	anulus
	under combined moments	31
Figure (14):	Disk pressure in the third lumb	ar disk
_	during the following postures;	supine,
	side lying, standing, forward ben	ding 20
	degrees, forward bending 20	degrees
	with a 20-kg weight, unsu	pported
	sitting, sitting bent forward 20 o	
	and sitting bent forward 20	
	with a 20-kg weigh	
Figure (15):	The effect of backrest inclination	
	lumbar support on intradiskal pr	ressur33

Fig. No.	Title Page No	
Figure (16):	70-kg standing man, the pressure on the	٥.
Figure (17):	L3 disk is on the order of 70 kg The role of aggrecan and collagen in the ability of disc to resist compression	
Figure (18):	Cadaveric lumbar intervertebral discs sectioned in the midsagittal plane	
Figure (19):	Alcian blue/Picrosirius red staining of degenerated IVD	42
Figure (20):	A healthy IVD with an intensely blue stained proteoglycan-rich NP	43
Figure (21):	Carragee classification of disc herniations	49
Figure (22):	Grading of disc degeneration on T2- weighted magnetic resonance imaging	51
Figure (23):	Low midline sill sign of a patient with lumbar spondylolisthesis	68
Figure (24):	Interspinous gap change during lumbar flexion-extension motion for the detection of lumbar instability	69
Figure (25):	Textiloma	
Figure (26):	Postoperative 'aseptic' spondylodiscitis: sagittal T1-WI and sagittal T2-WI	75
Figure (27):	Expected postoperative finding: normal epidural and intervertebral fibrosis	
Figure (28):	Recurrent disc herniation	
Figure (29):	Postoperative axial T1W, post-contrast T1W, T2W MRI	
Figure (30):	Old recurrent disc herniation	
Figure (31):	Massive recurrent disc herniation	84
Figure (32):	Old recurrent disc herniation	85
Figure (33):	Sagittal T2W MRI of the lumbar spine after laminectomy for arachnoiditis	
Figure (34):	showing thickened, clumped nerve roots Facet joint osteoarthritis on CT scan	

Fig. No.	Title	Page No.
Figure (35):	Open Diskectomy	99
Figure (36):	Intraoperative photograph	100
Figure (37):	Open Posterolateral Lumbar Fusio	n105
Figure (38):	Diagram illustrating the pedicle wi	dth105
Figure (39):	Steps involved in lumbar instrum	ented
	fusion	107
Figure (40):	Sagittal view of the exposure	
Figure (41):	Two posterior lumbar interbody f	
	spacers within the disc space	
Figure (42):	Sagittal view using Brantigan c	
	fiber fusion	
Figure (43):	Anterior lumbar interbody fusion	
Figure (44):	A 52-year-old man with L5-S1 recu	
	disc with, grade 1, i spondylolist	
	causing back and leg pain that	
T: (45).	treated with a TLIF procedure	
Figure (45):	Flow diagram of identified, excl	·
	and included studies used in	
Figure (46):	systemic review Forest plot for estimated blood loss.	
rigure (40).	is evidence of heterogeneity (Cochi	
	p-value = 0.0002 , $I^2 = 81.8\%$). Ra	
	effects estimate favors discectomy	
	fusion (SMD = -1.892 , 95% CI = -2.6	
	-1.107, p-value <0.001)	
Figure (47):	Funnel plot for estimated blood	
118410 (11)	There is no evidence of publication	
Figure (48):	Forest plot for the incidence of	
0 . ,	tear. There is evidence of heteroge	
	(Cochran Q p-value = 0.053 ,	-
	54.811%). Random effects est	
	shows no difference between disceed	ctomy
	and fusion (OR = 0.981 , 95% CI = $-$	0.281
	to 3.427, p-value = 0.976)	138

Fig. No.	Title	Page No.
Figure (49):	Funnel plot for the incidence of tear. There is no evidence of publicas.	
Figure (50):	Forest plot for achieving gexcellent MacNab score. There evidence of heterogeneity (Cochravalue = 0.526, I ² = 0.00%). Fixed estimate shows no difference be discectomy and fusion (OR = 0.60 CI = 0.268 to 1.351, p-value = 0.2	e is no an Q p- effects etween 02, 95%
Figure (51):	Funnel plot for achieving gexcellent MacNab score. There evidence of publication bias	good-to- is no
Figure (52):	Forest plot for the hospital lenstay. There is evidence of hetero (Cochran Q p-value <0.0.0001 92.63%). Random effects estimated discectomy over fusion (SMD = 95% CI = -3.156, p-value = 0.002)	ngth of geneity , I ² = e favors -1.919,
Figure (53):	Funnel plot for the hospital leastay. There is no evidence of publicas.	ngth of lication
Figure (54):	Forest plot for the JOA score. To no evidence of heterogeneity (Coop-value = 0.485, I ² = 0.00%). effects estimate shows no stati	There is thran Q Fixed stically setween -0.164,
Figure (55):	Funnel plot for the JOA. There evidence of publication bias	e is no

Fig. No.	Title	Page No.
Figure (56):	Forest plot for the ODI. There is heterogeneity (Cochran Q p-0.146, I ² = 52.78%). Random estimate shows no statistically significance between discectomy ar (SMD = -0.089, 95% CI = -0.906 p-value = 0.828).	value = n effects gnificant nd fusion to 0.728,
Figure (57):	Funnel plot for the ODI. The evidence of publication bias	
Figure (58):	Forest plot for the operative time is evidence of heterogeneity (Comp-value = 0.0009, I ² = 78.74%). effects estimate favors discector fusion (SMD = -2.779, 95% CImport to -1.970, p-value < 0.001)	chran Q Random my over = -3.589
Figure (59):	Funnel plot for the operative There is no evidence of publication	ve time.
Figure (60):	Forest plot for reoperation. The evidence of heterogeneity (Cochivalue = 0.298, I ² = 18.48%). Fixe estimate shows no state	ere is no ran Q pod effects tistically between 667, 95%
Figure (61):	Funnel plot for reoperation. The evidence of publication bias	ere is no
Figure (62):	Forest plot for the VAS score pain. There is no evide heterogeneity (Cochran Q processes). Fixed effects shows no statistically significance between discectomy are fusion (SMD = -0.005, 95% CI = 0.538, p-value = 0.986)	ence of value = estimate gnificant nd fusion -0.548 to

Fig. No.	Title Page N	J o.
Figure (63):	Funnel plot for the VAS score of back	
	pain. There is no evidence of publication bias.	152
Figure (64):	Forest plot for the VAS score of lower	
	limb pain. There is no evidence of heterogeneity (Cochran Q p-value = 0.490, I ² = 0.00%). Fixed effects estimate shows no statistically significant difference between discectomy and fusion (SMD = -0.035, 95% CI = -0.579 to 0.509, p-value =	
	0.898)	154
Figure (65):	Funnel plot for the VAS score of lower limb pain. There is no evidence of publication bias	154

List of Abbreviations

Full term Abb. ADAMs A Disintegrin and Metalloproteinase AF.....Anulus fibrosus ALIF......Anterior lumbar interbody fusion ALL.....Anterior Longitudinal Ligament ANOVA......ANalysis Of VAriance APAntero-Posterior CBC.....Complete Blood Count CEP.....Cartilaginous End Plates CES......Cauda Equina Syndrome CILP......Cartilage Intermediate Layer Protein CPC.....Calcium phosphate cement CSF..... Cerebrospinal Fluid CT......Computed Tomography ESR.....Erythrocyte Sedimentation Rate fMRI......Functional Magnetic Resonance Imaging GAGGlycosaminoglycan HS.....Hounsfield Scale IDP.....Intradiscal Pressure IFN-g.....Interferon Gamma IL.....Interleukin IV.....Intravenous IVD.....Intervertebral Disc IVF.....Intervertebral Foramen LBP.....Low Back Pain LF.....Ligamentum Flavum LI.....Lumbar Instability LS.....Lumbar spondylolisthesis MED.....Microendoscopic Discectomy MEPS......Multi-axial expandable pedicle screws

List of Abbreviations (Cont...)

Full term Abb. MI.....Microinstability MMP-3.....Matrix Metallopeptidase 3 MRI......Magnetic Resonance Imaging NGF.....Nerve growth factor NP......Nucleus Pulposus PELDPercutaneous Endoscopic Lumbar Discectomy PLF.....Posterolateral Fusion PLIF.....Posterior Lumbar Interbody Fusion PLLPosterior Longitudinal Ligament PMMA.....Polymethyl-methacrylate SI.....Signal intensity SLR.....Straight Leg Raising T1WI.....T1 weighted Image T2WI.....T2 weighted Image TDR......Total Disc Replacement TLIF.....Transforaminal lumbar Interbody Fusion TNF-aTumor necrosis factor alpha TSE.....T2 weighted spin echo

Abstract

Objectives: Current surgical treatment options for one-time recurrent lumbar disc herniation (RLDH) include repeat discectomy or discectomy supplemented with fusion. Significant contention exists within the surgical spine community with regard to the most effective treatment modality. The objective of this study is to compare reoperation rates and patient reported outcomes following fusion versus repeat discectomy for RLDH.

Patients and Methods: The electronic literature search was performed in Ovid Medline/Pubmed, EMBASE and Cochrane, for human studies directly comparing repeat discectomy with fusion for ipsilateral or contralateral RLDH. Using mean differences (MD) and odds ratios (OR) for continuous and categorical outcomes, respectively.

Results: A total of 798 patients with RLDH (457 fusions and 341 repeat discectomies) from 11 studies (10 observational and 1 randomized controlled trials) were analyzed. Mean time to reherination was 54.4 ± 30.4 months, while average follow-up time was 40 ± 11.7 months (range: 12-92.6). No difference was found between fusions and repeat discectomies with regards to related reoperations (OR: 0.68; 95% C.I: 0.14-3.2). Changes in PRO scores from baseline to last follow-up were also similar between the two groups, including VAS- back pain (MD, -0.3; 95% CI, -1.4 to 0.7), VAS-leg pain (MD, -0.3; 95% CI, -1.4 to 0.7), ODI (MD, 0.6; 95% CI, -0.2 to 1.4), JOA (MD: 1.0; 95% CI: 0.02 to 2.0) and MacNab satisfaction (OR: 1.5; 95% CI, 0.9 to 2.3).

Conclusion: Available evidence shows that in treating one-time recurrent disc herniations, repeat discectomy and fusion are associated with comparable reoperation rates, incidence of dural tears, functional outcomes as well as satisfaction with surgical treatment at last follow-up. Future longitudinal, randomized controlled trials should be completed to validate any associations found in this study.

keywords (Discectomy, Fusion, Recurrent, Lumbar disc herniation, Patient reported outcomes, Dural tear, Reoperation, Oswestry disability index, Modified Japanese orthopedic scale, Leg pain, Back pain, Postoperative infections, Operative time, Hospital stay)

Introduction