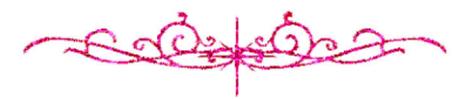


بسم الله الرحمن الرحيم


-cal-son

COEFOC CARGORIO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFERS CARBORNER

بعض الوثائق

الأصلية تالفة

CORRECT CORRECTION

بالرسالة صفحات

لم ترد بالأصل

COEFERT CARGORNO

Degree of Conversion, Monomer Elution, Depth of Cure and Marginal Leakage of a Bulk Fill Composite

Thesis

Submitted to the Faculty of Dentistry
Ain-Shams University

In partial fulfillment of the requirements for the Master Degree in Dental Biomaterials

By

Tarek Mohamed Elshazly

B.D.S (Ain-Shams University, 2010)

Biomaterials Department Faculty of Dentistry Ain-Shams University 2019

Supervisors

Prof. Dr. Dalia Ibrahim El-Korashy

Professor of Dental Biomaterials
Head of Biomaterials Department
Faculty of Dentistry
Ain-Shams University

Dr. Dalia Ibrahim Sherief

Lecturer of Dental Biomaterials
Biomaterials Department
Faculty of Dentistry
Ain-Shams University

Prof. Dr. Christoph Heß

Professor of Non-metallic Materials Faculty of Technology and Bionics Hochschule Rhein-Waal (Germany)

ACKNOWLEDGEMENT

It is a pleasure to thank those who made this thesis possible;

Highest appreciation to **Prof. Dr. Dalia El-Korashy**, for her teaching, mentorship and continuous guidance. Thank you Dr. Dalia for being a great mentor, and treating me as part of your family. It's really my honor to be your student.

Deep respect to **Dr. Dalia Sherif** for her great support and precious experience in guiding and teaching me. Thanks Dr. Dalia for your support and your valuable guidance.

Great gratitude to **Prof. Dr. Christoph He\beta**, for his supervision on this research and for his support and help.

Faithful appreciation is owed to **Prof. Dr. Christoph Bourauel**, Chairman of Oral-medicine technology Department, Faculty of Dentistry, Bonn University, for his valuable support and guidance in all my research works.

Sincere respect to **Prof. Dr. Amir Fahmi**, Professor of Biomaterials, Rhein-Waal University, for his considerable help and his continuous encouragement.

Warm greetings to my friend **Dr. Islam Shahin**, for being always there when I need him.

Special thanks to my friend **Dr. Bassam Ahmed** for his great help in statistical analysis of the data.

Great Thanks to my sister-in law **Dr. Salma Adam**, for her help and support.

Thanks to **3M ESPE**, **Germany** for providing the required materials for this research project.

Last but not least, I offer my regards and blessings to all my Professors and Colleagues in the Biomaterials Department, Faculty of Dentistry, Ain-shams University, especially **Dr. Basma Rozza** and **Dr. Ahmed El-Banna**, for their spiritual support. It's really an honor to be part of this department.

DEDICATIONS

To my **Parents**, to whom I owe everything.

To my beloved Wife, Sumaya, for her endless support and love.

To my dear Sisters, Nada and Ghada, and my dear Brother Yasser for their love and continuous encouragement.

To the soul of my Grandfather, May Allah have mercy on him.

List of Contents

Title	Page	e No.
List of Tables	S	i
List of Figure	es	iii
List of Abbre	eviations	vi
Introduction .		1
Review of Li	terature	10
1. Resin	based composites	10
1.1	General composition of dental resin based compo	osites10
1.2	Classifications of resin based composites	16
1.3	Polymerization reaction kinetics	17
2. Drawb	backs of dental resin based composites	19
2.1	Incomplete polymerization	19
2.2	Biocompatibility considerations	20
2.3	Water sorption	21
2.4	Limited depth of cure	22
2.5	Polymerization shrinkage and polymerization s	hrinkage
	Stresses	
3. Advar	ncements in resin based composites	24
3.1	Advancements in filler technology	24
3.2	Advancements in matrix technology and polym	
	mechanisms	
	uction of bulk fill composites	
	ation of resin based composite	
5.1	Degree of conversion	
5.2	Monomer Elution	
5.3	Depth of cure	
5.4	Marginal leakage	
	tudy	
	l Methods	
•		
		115
Arabic Summ	nary	

List of Tables

Table No.	Title	Page No.
Table (1):	Materials used in the study, their compedescription and lot number	
Table (2):	Standard pure monomers used for calibrate monomer elution test	
Table (3):	Regression equations of the calibration curves correlation coefficient (R^2), limit of detection in μ g/ml, and limit of quantification (LoQ) in retention times (RT) in minutes of the investment at 205 nm.	(LoD) μg/ml, stigated
Table (4):	Effect of different variables and their interaction degree of conversion.	
Table (5):	Mean ± standard deviation (SD) values of de conversion for different packing technique curing times.	es and
Table (6):	Mean ± standard deviation (SD) values of de conversion for different packing technique storage periods	es and
Table (7):	Mean \pm standard deviation (SD) values of me elution ($\mu g/mg$) for different packing techniqu	
Table (8):	Mean \pm standard deviation (SD) values of me elution ($\mu g/mg$) for different curing times	
Table (9):	Mean \pm standard deviation (SD) values of me elution ($\mu g/mg$) for different monomers	
Table (10):	Mean \pm standard deviation (SD) values of mediution ($\mu g/mg$) for different storage periopacking techniques	ds and
Table (11):	Mean \pm standard deviation (SD) values of elution ($\mu g/mg$) for different packing tech curing times and storage periods	niques,
Table (12):	Mean \pm standard deviation (SD) values of TE elution ($\mu g/mg$) for different packing tech curing times and storage periods	niques,

Table (13):	Mean ± standard deviation (SD) values of UDMA elution (μg/mg) for different packing techniques, curing times and storage periods	86
Table (14):	Mean \pm standard deviation (SD) values of Bis-GMA elution ($\mu g/mg$) for different packing techniques, curing times and storage periods	88
Table (15):	Effect of different variables and their interactions on depth of cure.	89
Table (16):	Mean ± standard deviation (SD) values of depth of cure for different curing times and different packing techniques.	91
Table (17):	Median (Range) values of marginal leakage for different curing times and different packing techniques.	93
Table (18):	Percentage (%) of marginal leakage scores for different curing times and different packing techniques.	95

List of Figures

Fig. No.	Title Page No.	_
Figure (1): Figure (2):	The chemical structure of some monomers11 Chemical structures of aromatic urethane dimethacrylate	1
	(AUDMA)	2
Figure (3):	Chemical structures of addition-fragmentation monomers (AFM)33	3
Figure (4):	Chemical structures of 1,12-Dodecanediol dimethacrylate (DDDMA)33	3
Figure (5):	Chemical structures of urethane dimethacrylate (UDMA)34	1
Figure (6):	Schematic drawing illustrating the refraction phenomena	3
Figure (7):	Schematic drawing illustrates the total internal reflection and the creation of the evanescent wave38	3
Figure (8):	Schematic drawing illustrates the components of HPLC device	2
Figure (9):	Filtek™ Supreme XTE Universal Conventional Composite51	1
Figure (10):	Filtek™ One Bulk Fill Composite51	1
Figure (11):	Universal Bond51	l
Figure (12):	Acid Etchant	2
Figure (13):	Flow chart for specimens' grouping53	3
Figure (14):	Teflon split mold53	3
Figure (15):	LED light curing unit (left) and radiometer (right)54	1
Figure (16):	Specimen (Left) – Digital Caliper (right)55	5
Figure (17):	Incubator55	5
Figure (18):	Molar embedded in resin block at level of CEJ with flattened occlusal surface56	5
Figure (19):	Drilling machine with a surveying table57	7
Figure (20):	The tooth block was mounted on the surveying table, and the parallelism and the machine setting were adjusted to produce a standardized 5mm deep cavity57	7

Figure (21):	Standardized occlusal cylindrical cavity 5 mm deep and		
	3 mm diameter		
Figure (22):	ATR-FTIR spectrometer59		
Figure (23):	The ATR-Crystal and the pressing arm59		
Figure (24):	HPLC device61		
Figure (25):	Standard curves of peak area versus monomer concentration for Bis-GMA62		
Figure (26):	Standard curves of peak area versus monomer concentration for HEMA63		
Figure (27):	Standard curves of peak area versus monomer concentration for TEGDMA63		
Figure (28):	Standard curves of peak area versus monomer concentration for UDMA64		
Figure (29):	Chromatogram of the standard monomers showing the retention time of HPLC peaks of HEMA, TEGDMA, UDMA, Bis-GMA under the experimental conditions65		
Figure (30):	Microhardness tester66		
Figure (31):	Indentation by Vickers Microhardness indenter66		
Figure (32):	Thermocycler67		
Figure (33):	A photograph of occlusal restored cavity with the tooth isolated by nail varnish except for the restoration and 1 mm around it		
Figure (34):	Automated water-cooled diamond saw68		
Figure (35):	Stereomicroscope connected to a computer68		
Figure (36):	Microphotograph 15X of the restoration after dye penetration		
Figure (37):	Schematic diagram representing the scoring system69		
Figure (38):	Bar chart showing mean degree of conversion for different curing time within each packing techniques73		
Figure (39):	Bar chart showing mean degree of conversion for different packing techniques within each curing time74		
Figure (40):	Bar chart showing mean degree of conversion for different storage periods within each packing technique75		
Figure (41):	Bar chart showing mean degree of conversion for different packing techniques within each storage period76		