

Ultrasound guided Extracorporeal Shock Wave Lithotripsy (SONO ESWL) versus fluoroscopy guided ESWL in patients with radiopaque renal stones

Thesis

Submitted for Partial Fulfillment of M.S. Degree in Urology

${\it By}$ Haytham Nagah Hassan Mohamed

Supervisors

M.B.B.Ch

Prof. Dr. Ahmed Salah Hegazy

Professor of Urology Faculty of Medicine, Ain Shams University

Dr. Diaa-Eldin Mahmoud Abd-elfattah

Lecturer of Urology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed Salah Hegazy**, Professor of Urology Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Diaa-Eldin Mahmoud Abd-elfattah**, Lecturer of Urology Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Haytham Nagah Hassan Mohamed

Dedication

Words can never express my sincere thanks to My Family and My Wife for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

I would like also to thank the **Patients** who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

List of Contents

Title	Page No.		
List of Tables			
List of Figuresi			
List of Abbreviationsiv			
Introduction	1		
Aim of the Work			
Review of Literature			
Radiological Anatomy of the Kidney	4		
Extracorporeal Shock wave lithotripsy	15		
Principles of Renal Ultrasound	25		
 Principles of Conventional Radiography in Stor Disease 			
Patients and Methods			
Results			
Discussion	65		
Summary	71		
Conclusion	72		
References			
Arabic Summary			

List of Tables

Table No.	Title	Page No.
— 11 (4)	5	
Table (1):	Patients demographics	49
Table (2):	Stone size & site in both groups	51
Table (3):	Stone HU in both groups	53
Table (4):	Positive outcome	55
Table (5):	No. of shock waves & Energy in both gr	coups 56
Table (6):	Localization time in both group	57
Table (7):	Relation between Localization time and	d stone
	size, site and HU in group A	58
Table (8):	Relation between Localization time and	d stone
	size, site and HU in group B	59
Table (9):	Fluoroscope time in group B	60
Table (10):	Relation between fluoroscope time and	stone
	size &HU.	60
Table (11):	The overall efficacy of ESWL	62
Table (12):	Outcomes between the groups A&B	63
Table (13):	Complications between the two groups.	64

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anterior view of a pelvicalyceal end a left kidney, obtained according injection—corrosion technique	ng to the
Figure (2):	The renal pelvis branches to form in the calyx is formed by the impress papilla, and the fornix is the side of	nfundibula, sion of the
Figure (3):	Scheme. Different morphologies of urinary tract	
Figure (4):	CT urography. Different morphologupper urinary tract	
Figure (5):	Various appearances of complex ren	al papillae11
Figure (6):	Intravenous excretory urography	11
Figure (7):	CTU. Calyceal diverticulum with a r	renal stone 12
Figure (8):	Lower pole infundibulopelvic angle as the angle between two axes	
Figure (9):	The focusing design of electr lithotriptor.	ohydraulic
Figure (10):	The two focusing mechanisms en electromagnetic lithotripters	nployed in
Figure (11):	Principles for a piezoelectric lithotri	
_	Curved array transducers are use performance of renal ultrasound	ed for the
Figure (13):	The alternating expansion and con the crystal produces longitudinal a waves	traction of nechanical
Figure (14):	In this simplified schematic di- ultrasound imaging, the ultrasoun- produced by means of a pulse	iagram of id wave is
Figure (15):	controlled by a master clock	beam is

List of Figures Cont...

Fig.	No.	Title	Page No.
Figu	ıre (16):	Coronal MRI showing that the lower lateral to the vertical plane	-
Figu	ıre (17):	Image of an MRI demonstrate anatomical position of the kidney abdomen and proper position and an ultrasound probe for imaging the left	y in the gle of the
Figu	ıre (18):	The spleen is seen on this image cepha left kidney	lad to the
Figu	ıre (19):	Right kidney viewed using the liv acoustic window	
Figu	ıre (20):	Right ureteral calculus (arrow) over sacrum is difficult to visualize on film	the plain
Figu	ıre (21):	Patients randomization, consort chart	
_		Relation between sex in both groups.	
Figu	ıre (23):	Relation between age in both group	50
Figu	ıre (24):	Stone size in both groups	52
Figu	ıre (25):	Stone site in both groups	52
Figu	ıre (26):	HU in both groups.	54
Figu	ıre (27):	Relation between localization time group.	
Figu	re (28):	Relation between fluroscope time/session size in group B	and stone
Figu	ıre (29):	Relation between fluroscope time/ses HU in group B.	
Figu	ıre (30):	Overall efficacy.	62
Figu	ıre (31):	Outcomes between the both group	64

List of Abbreviations

Abb.	Full term
AIUM	American Institute for Ultrasound in Medicine
AUA	American Urological Association
BMI	Body Mass Index
CBC	Complete blood count
CT	Computed tomography
EAU	European Association of Urology
ESWL	Extracorporeal shockwave lithotripsy
Gy	Gray
HU	Hounsfield units
IR	Ionizing radiation
KUB	Kidney-ureter-bladder
mSv	MilliSieverts
NSAIDS	Nonsteroidal anti-inflammatory drugs
PCNL	Percutaneous nephrolithotomy
RRL	Relative radiation level
SFRs	Stone free rate
SSD	Skin-to-stone distance
Sv	Sieverts
U/S	Ultrasound

INTRODUCTION

Incidence of nephrolithiasis is escalating especially in Middle Least countries. This increase is not related to factors like age, sex and race. The most important risk factors include obesity, decreased fluid intake and calcium consumption, increased sodium, oxalate and animal protein consumption. (1)

There are many options for treatment of renal stones and the choice is dependent on many factors including patient age and comorbidity, stone factors (size, type, site), anatomy of the kidney, and sometimes patient's preference. (2) These options include oral chemical dissolution, extracorporeal shock wave lithotripsy, percutaneous nephrolithotripsy, retrograde intrarenal lithotripsy or open surgery. (3)

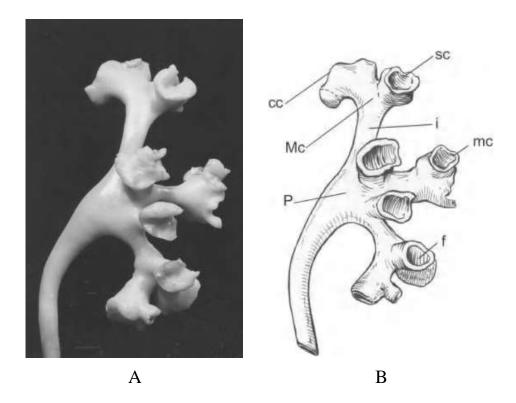
Currently, there is a trend towards the utilization of minimally invasive endoscopic procedures, for example, (flexible) ureteroscopy or mini percutaneous nephrolithotomy for the treatment of renal stones. Despite of this development, ESWL stays one of the preferred treatment options for renal stones<20 mm. (4) ESWL has a low complication rate and does not require general anaesthesia. (5)

The success rate of ESWL is affected by stone factors (stone size, location, composition, degree of obstruction), clinical factors (comorbidities for example, concomitant infection, abnormal ureteral anatomy), and technical factors

(available equipment, source of energy). (6) several factors impacting the stone clearance and success rate, such as body mass index and skin-to-stone distance. (7)

The initial extracorporeal shockwave lithotripsy (ESWL) machines used fluoroscopy for stone localization and treatment monitoring. Although this imaging method has the benefit of being familiar to urologists, it has some drawbacks, such as difficulty in localizing some stones, especially radiolucent stones, and exposure to radiation to the operator and the patient. (8)

Ultrasound is ideal for imaging of renal calculi during extracorporeal shock wave lithotripsy. Ultrasound can localise radiolucent stones and monitor stones fragmantation in real time. The utilization of ultrasound specifically reduces the radiation exposure to the patient and the operator, which is particularly desirable in children. (9)


AIM OF THE WORK

This prospective randomized comparative study was done to investigate whether the localization modality (u/s or fluoroscopy) affects clinical outcomes of ESWL or not.

Chapter 1

RADIOLOGICAL ANATOMY OF THE KIDNEY

enal parenchyma basically consists of two kinds of tissue the cortex and medulla. The cortical tissue is made up of the glomeruli with proximal and distal convoluted tubules. The renal pyramids are made up of loops of Henle and collecting ducts; these ducts join to form the papillary ducts (about 20), which open at the papillary surface and drain urine into the collecting system. A minor calyx is defined as the calyx that is in immediate relation to a papilla. The renal minor calyces drain the renal papillae and range in number from 5 to 14 (mean, 8); it was found that 70% of kidneys have 7–9 minor calyces. The minor calyx may be single (drains one papilla) or compound (drains two or three papillae). The minor calvees may drain straight into an infundibulum or join to form major calyces, which subsequently will drain into an infundibulum. Finally, the infundibulae, which are considered the primary divisions of the pelvicalyceal system, drain into the renal pelvis (figure 1). (10)

Figure (1): (A) Anterior view of a pelvicalyceal endocast from a left kidney, obtained according to the injection–corrosion technique. (B) Schematic of the endocast shown in A. This shows the essential elements of the kidney collecting system. cc, compound calyx; sc, single calyx; mc,minor calyx; Mc, major calyx; f, calyceal fornix; i, infundibulum; P,renal pelvis. (11)

Radiologic Anatomy of the Renal Parenchyma

In a well-prepared plain kidney-ureter-bladder (KUB) radiograph, the renal shape, margins, dimensions, and location can be identified. The psoas muscle line could also be appreciated. Radio-opacities, calcifications, and radiolucencies could be identified. Normally the kidney is located between the transverse processes of T12-L3 vertebrae, with the right kidney 2 centimeters (cm) lower than the left. The long axis of the

kidneys is directed downwards and outwards, parallel to the lateral border of psoas muscle. The upper poles are normally oriented more medially and posteriorly than the lower poles. (12)

In gray-scale ultrasonography, the renal cortices of newborn kidneys are isoechoic or hyperechoic to the liver and splenic parenchyma, because of the presence of loops of Henle and proportionately greater volume of glomeruli in the cortex than in adults ⁽¹³⁾. In adults, the normal kidneys have smooth margins and both renal cortices and pyramids are usually hypoechoic to the liver. Compared with renal parenchyma, the renal sinus appears hyperechoic because of the presence of hilar adipose tissue, blood vessels, and lymphatics. ⁽¹⁴⁾

On unenhanced computed tomography (CT), the renal parenchyma is homogeneous, with a density ranging from 30 to 60 Hounsfield units (HU) that increases up to 80 to 120 HU after intravenous contrast injection. (15)

■ Radiologic Anatomy of the Collecting System

a) Excretory Urography

After an iodinated contrast agent is injected for intravenous urography, nephrotomograms appear after 60 to 90 seconds that represent contrast material within the renal tubules. Fifteen minutes after contrast injection, a panoramic radiograph of the whole urinary tract can be obtained; the bladder finally appears 20 to 30 minutes after contrast injection.